首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Different molecular assemblies were compared in two new structures [4-CH3-C6H4C(O)NH]P(O)[NH]2(CH2)3, 1, and [4-CH3-C6H4C(O)NH]P(O)[NHC6H3(3,4-CH3)2]2, 2, belonging to the families of “cyclic phosphoric triamide” and “phosphoric triamide”, respectively. The differences in the hydrogen bond motifs were discussed (by single crystal X-ray diffraction) as a result of three factors: (1) action of two N atoms with a non-planar environment in 1 as an H-bond acceptor, (2) different orientations of three N–H bond vectors in two molecules and (3) different conformations of C=O and P=O groups. These differences lead to more complicated hydrogen bond pattern of 1, with respect to that of 2, as structure 1 may be considered as a model of four-acceptor–three-donor versus a two-acceptor–three-donor system in 2. The main discrepancies of 1 and 2, monitored by the Hirshfeld surface analysis, are related to the contribution portions of O···H/H···O contacts, in which compound 1 not only involves the greater existence of classical hydrogen bonds but also contains the further C–H···O weak interactions in its crystal packing with respect to compound 2. Instead, in 2, the shortage of O···H/H···O contacts has been partially compensated by the C···H/H···C interactions, due to the presence of more unsaturated carbon acceptors. The differences in assemblies are also reflected in the solid-state IR spectra, especially for the N–H vibration frequencies. The new compounds were further studied by 1D NMR experiments (1H, 13C, 31P), 2D NMR techniques [HMQC and HMBC (H–C correlation), HSQC (N–H correlation)], high-resolution ESI–MS, EI–MS spectrometry and IR spectroscopy.  相似文献   

2.
Tris(para-tolyl)antimony bis(2-oxybenzaldoximate) (I), tris(para-tolyl)antimony bis(2-nitrobenzaldoximate) (II), tris(para-tolyl)antimony bis(2-bromobenzaldoximate) (III), tris(3-fluorophenyl)antimony bis(2-oxybenzaldoximate) (IV), tris(4-fluorophenyl)antimony bis(2-bromobenzaldoximate) (V), and tris(4-fluorophenyl)antimony bis(2-nitrobenzaldoximate) (VI) are synthesized by the reactions of tris(paratolyl)-, tris(3-fluorophenyl)-, and tris(4-fluorophenyl)antimony with 2-oxy-, 2-nitro-, and 2-bromobenzaldoxime in diethyl ether in the presence of tert-butyl hydroperoxide. The Sb atoms in complexes IVI have a distorted trigonal bipyramidal coordination mode with the oximate ligands in the axial positions. CIF files CCDC nos. 1062231 (I), 1059962 (II), 1465384 (III), 1465109 (IV), 1471948 (V), and 1060387 (VI).  相似文献   

3.
The condensation reactions of hexachlorocyclotriphosphazene, N3P3Cl6, with N-alkyl-N′-mono(4-nitrobenzyl)diamines (13), NO2PhCH2NH(CH2) n NHR1 (R1 = CH3 or C2H5), led to the formation of the mono(4-nitrobenzyl)spirocyclotriphosphazenes (46). The tetra-pyrrolidino (4a6a), piperidino (4b6b), and 1,4-dioxa-8-azaspiro[4,5]decaphosphazenes (4c6c) were prepared from(for) the reactions of partly substituted compounds (4, 5, and 6) with excess pyrrolidine, piperidine, and 1,4-dioxa-8-azaspiro[4,5]decane (DASD), respectively. The partly substituted geminal (4d and 5d) and cis-morpholino (6d) phosphazenes were isolated from the reactions of excess morpholine in boiling THF and o-xylene, but the expected fully substituted compounds were not obtained. The structures of all the phosphazene derivatives were determined by elemental analyses, MS, FTIR, 1H, 13C{1H}, 31P{1H} NMR, HSQC, and HMBC techniques. The crystal structures of 4, 6, 4a, and 5a were verified by X-ray diffraction analysis. In addition, in vitro cytotoxic activities of fully substituted phosphazenes (4a6c) against HeLa cervical cancer cell lines (ATCC CCL-2) and the compounds 4a and 4c against breast cancer cell lines (MDA-MB-231) and L929 fibroblast cells were evaluated, respectively. Apoptosis effect was determined by MDA-MB-231 cancer cell lines and fibroblast cells. The MIC values of the compounds were in the ranges of 9.8–19.5 µM. The compounds 6, 5a, 6a, 5b, and 6d have greater MIC activity against bacterial and yeast strain. The investigation of DNA binding with the phosphazenes was studied using plasmid DNA. The phosphazene derivatives inhibit the restriction endonuclease cleavage of plasmid DNA by BamHI and HindIII enzymes. BamHI and HindIII digestion results demonstrate that the compounds bind with G/G and A/A nucleotides.  相似文献   

4.
The (DienH3)[AuCl4]3 · H2O (I) and (DienH3)2[AuCl4]Cl5 (II) compounds were obtained by the reaction of HAuCl4 with diethylenetriamine trihydrochloride (DienH3Cl3) in hydrochloric acid. The compounds were characterized by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. Crystals of I and II are monoclinic with space group P21/n. For I, a = 12.2314(3) Å, b = 14.6077(5) Å, c = 13.2680(5) Å, β = 106.7350(10)°, V = 2270.22(13) Å3, Z = 8. For II, a = 6.62990(10) Å, b = 17.9026(5) Å, c = 10.3661(3) Å, β = 101.9230(10)°, V = 1203.83(5) Å3, Z = 2. Both structures are ionic. The gold atoms in I and II have a 4 + 2 coordination environment. The Au-Cl bond lengths are within 2.276–2.294 Å, and the axial Au…Cl contacts are within 3.315–3.405 Å. The diethylenetriammonium cation in I and II has different conformations.  相似文献   

5.
Six triarylamine derivatives 1–6 with branched multi-pyridine substituents were prepared and characterized. These compounds are distinguished by the substituent on one of the phenyl group with NO2 for 1, CN for 2, Cl for 3, p-C6 H4 OMe for 4, OMe for 5,and NMe2 for 6, respectively. As revealed by single crystal X-ray analysis, these substituents play an important role in determining the configuration of the triarylamine framework and the crystal packing of 1–6. The emission properties of these compounds were examined in different solvents(toluene, CH2 Cl2, acetone, tetrahydrofuran(THF), and N,N-dimethylformamide(DMF)) and in solid states. Distinct dual emissions from the localized emissive state and the intramolecular charge transfer state were observed for compound 5 in CH2 Cl2. Compounds 1 and 6 show apparent aggregated enhanced emissions in acetone/H2 O.The emission properties of these compounds were further modulated by the addition of tris(pentafluorophenyl)borane. In addition, density functional theory(DFT) and time-dependent DFT(TDDFT) calculations have been performed on the ground and singlet excited states to complement the experimental findings.  相似文献   

6.
Compounds with compositions [Rh(H2O)6]2(SO4)3·4H2O (I), (H3O)[Rh(H2O)6](SO4)2 (II), [Rh(H2O)5OH](SO4)·0.5H2O (III), and [Rh(H2O)6]2(SO4)·(H2SO4) x ·5H2O (IV) have been studied. The crystal structures of II, III, and IV were determined. All compounds crystallized in the monoclinic crystal system. Crystal data for II: a = 7.279(2) Å, b = 10.512(7) Å, c = 15.806(3) Å, β = 96.71(3)°, space group P21/n, Z = 2, d calc = 2.334 g/cm3; III: a = 20.433(4) Å, b = 7.820(2) c = 11.215(2) Å, β = 114.14(1)°, space group C2/c, Z = 8, d calc = 2.559 g/cm3; IV: a = 6.2250(4 Å), b = 27.0270(12) Å, c = 7.2674(5) Å, β = 97.04(3)°, space group P21/c, Z = 4, d calc = 2.143 g/cm3. The compounds were studied by IR spectroscopy and powder X-ray diffraction. All of the isolated crystalline phases are sparingly soluble in ethanol and well soluble in water.  相似文献   

7.
New cluster complexes of lanthanides(III) and nickel(II) [Ln{Ni(Gly)2}6]3+[Ln(NO3)6]3– have been synthesized, where Ln = La (I), Ce (II), and Pr (III); and Gly is glycinate. The structures of compounds IIII are determined by X-ray diffraction. The icosahedral cavity in the complex cation, where the lanthanide ion resides, has a fixed size independent of the nature of the central Ln(III) ion. In the complex anion, on the contrary, the Ln–O distances naturally decrease from La(III) to Pr(III). The optical properties of cationanion complexes IIII are studied. Based on the assignment in the electronic absorption spectra of the complexes, it is shown that the absorption bands are caused by d–d electronic transitions.  相似文献   

8.
The structure of four new palladium complexes [Pd(HL 2 )Cl 2 and Pd(L 1–3 ) 2 ] with 3-(2-pyridyl)-5-R-1,2,4-triazoles (R=H, CH3, Ph respectively HL 1 , HL 2 , HL 3 ) was proposed based on IR, NMR, UV spectroscopy and MALDI mass spectrometry data analysis. It is found that the complexation of HL 2 and HL 3 with Pd2+ ions results in a decrease of their fluorescence intensity and it is vice versa in case of HL 1 . Furthermore, the influence of the substituent (R) in the 3-(2-pirydyl)-5-R-1,2,4-triazoles on the fluorescent and protolytic properties of HL 1–3 was investigated.  相似文献   

9.
µ2-Oxobis[(2,4,6-tribromophenoxo)tris(para-tolyl)antimony] (I), µ2-oxobis[(2,3,4,5,6-pentachlorophenoxo) tris(para-tolyl)antimony] (II), and µ2-oxobis(2,4-dinitrophenoxo)tris(para-tolyl)antimony] (III) have been synthesized with high yields by the reaction of tris(para-tolyl)antimony with 2,4,6-tribromo-, 2,3,4,5,6-pentachloro-, and 2,4-dinitrophenol, respectively, in ether in the presence of tert-butylhydroperoxide. The Sb atoms in complexes I, II, and III have a distorted trigonal bipyramidal coordination with the aroxyl ligands and the bridging oxygen atom in axial positions. The central Sb–O–Sb moiety in molecules of complexes I–III has an angular structure.  相似文献   

10.
The crystal structures of compounds of the composition [Rh(H2O)6]2(SO4)3·5H2O (I) and [Rh(H2O)6]PO4 (II) are determined. Crystallographic data for I: a = 7.272(9) Å, b = 27.047(1) Å, c = 12.464(9) Å, β = 97.038(10)°, P21 space group, Z = 4, d x = 2.184 g/cm3; for II: a = 9.746(6)Å, b = 6.877(7) Å, c = 23.623(6) Å, β = 100.601(10)°, C2/c space group, Z = 8, d x = 2.611 g/cm3. Compounds are analyzed by IR spectroscopy and powder XRD. Crystalline phase I is well soluble in water, whereas II is almost insoluble.  相似文献   

11.
The syntheses, structures, and solid-state emission characteristics of trans-bis(salicylaldiminato)Pt(II) complexes bearing N-aromatic functionalities are described herein. A series of Pt complexes bearing various N-phenyl (1) and N-(1-naphthyl) (2) groups on the salicylaldiminato ligands were prepared by reacting PtCl2(CH3CN)2 with the corresponding N-salicylidene aromatic amines, and the trans-coordination and crystal packing of these complexes were unequivocally established based on X-ray diffraction (XRD). Complexes with 2,6-dimethylphenyl (1c), 2,6-diisopropylphenyl (1d), 1-naphthyl (2a), and 1-(2-methylnaphthyl) (2b) groups on the N atoms exhibited intense phosphorescent emission at ambient temperature in the crystalline state, while those with phenyl (1a), 2,6-dibromophenyl (1b), and 2,6-bis(N,N-dimethylamino)phenyl (1e) functionalities were either less emissive or non-emissive under the same conditions. XRD analyses identified significant intramolecular interactions between Pt and H atoms of the N-aryl functionalities in the emissive crystals of 1c, 1d, and 2a. These interactions were evidently an important factor associated with intense emission at ambient temperature.  相似文献   

12.
Two dinuclear complexes [Zn(μ-L)(NO3)(H2O)]2 (1) and [Cu2(μ-L)2(HL)2](NO3)2(C12H8Br2)0.5·H2O (2), (HL = 3-(2-pyridyl)pyrazole, C12H8Br2 = 4,4′-dibromobiphenyl) are synthesized under hydrothermal conditions and characterized by elemental analysis and X-ray single crystal diffraction. Crystal data for 1: triclinic, \(P\bar 1\), a = 8.8478(7) Å, b = 15.0550(11) Å, c = 16.4310(12) Å, α = 107.588(4)°, β = 112.498(3)°, γ = 115.595(3)°, V = 2099.8(9) Å3, Z = 2; for 2: triclinic, \(P\bar 1\), a = 7.2870(15) Å, b = 8.6840(17) Å, c = 9.3290(19) Å, α = 107.588(4)°, β = 112.498(3)°, γ = 115.595(3)°, V = 528.77(18) Å3, Z = 1. Complex 1 and 2 are both dinuclear structures which are further packed into a 1D supramolecular chain and a 3D supramolecular framework via weak C–H…O hydrogen bond interactions respectively.  相似文献   

13.
Single crystal X-ray diffraction is used to investigate two synthesized β-diketonate complexes of copper(II) with aminopyridine: Cu(4-NH2Py)(aa)2 (I) and Cu(4-NH2Py)(hfa)2 (II). The crystals of I and II have a monoclinic system; the unit cell parameters of I are: P21/n space group, a = 8.2921(3) Å, b = 14.7243(5) Å, c = 13.4970(4) Å, β = 102.426(1)°, V = 1609.32(9) Å3, Z = 4; for II: C2/c space group, a = 23.5704(5) Å, b = 11.4977(2) Å, c = 16.0285(3) Å, β = 109.265(1)°, V = 4100.6(1) Å3, Z = 8. The structures of I and II are molecular; they are composed of isolated molecules. The coordination polyhedron of the copper atom is formed by the O atoms of two acetylacetonate ligands (Cu-O 1.940(2)–2.171(2) I and the O atoms of two hexafluoroacetylacetonate ligands (Cu-O 1.940(2)–2.215(3) Å) in II. The molecules of 4-NH2Py are bonded to the copper atom via the nitrogen atom of the aromatic ring (Cu-N 2.008(2) Å in I and Cu-N 1.978(3) Å in II). Noncoordinated amino groups join the molecules of the complexes together by means of N-H…O hydrogen bonds.  相似文献   

14.
A series of new arene ruthenium(II) complexes were prepared by reaction of ruthenium(II) precursors of the general formula [(η6-arene)Ru(μ-Cl)Cl]2 with N,N′-bidentate pyridyl-imine ligands to form complexes of the type [(η6-arene)RuCl(C5H4N-2-CH=N-R)]PF6, with arene = C6H6, R = iso-propyl (1a), tert-butyl (1b), cyclohexyl (1c), cyclopentyl (1d) and n-butyl (1e); arene = p-cymene, R = iso-propyl (2a), tert-butyl (2b). The complexes were fully characterized by 1H NMR and 13C NMR, UV–Vis and IR spectroscopies, elemental analyses, and the single-crystal X-ray structures of 2a and 2b have been determined. The single-crystal molecular structure revealed both compounds with a pseudo-octahedral geometry around the Ru(II) center, normally referred to as a piano stool conformation, with the pyridyl-imine as a bidentate N,N ligand. The activity of all complexes in the transfer hydrogenation of cyclohexanone in the presence of NaOH and iso-propanol is reported, the compounds showing turnover numbers of close to 1990 and high conversions. Complex 2b was also shown to be very effective for a range of aliphatic and cyclic ketones, giving conversions of up to 100 %.  相似文献   

15.
Density functional theory and ab initio computations elucidated the ring-opening of substituted (R = –CF3, –CN, –CH3, –H, –NH2, –OCH3, –OH, –SiH3) 1-bromo–1-lithiosilirane 1 and 2-bromo–2-lithiosilirane 2 to LiBr complexes of 2-silaallene and 1-silaallene, respectively. Formally, two competitive pathways can be considered. The ring-opening reaction can take place through a concerted manner via TS3. Alternatively, the reaction may proceed in a stepwise fashion with the intermediacy of a free silacyclopropylidene–LiBr complex 7. In both cases, the position of the substituents determines the kinetic of the reactions. The structures with an electron-donating group are generally unstable, whereas the silacyclopropylidenoids bearing electron-withdrawing substituents are particularly stable species. Here, we propose the ring-opening of 5ah to corresponding LiBr complexes of 2-silaallenes can proceed in both concerted and stepwise mechanism except for –H, –CH3, and –SiH3. The obtained activation energies for the ring-openings of 5ah to related 2-silaallenes are too high for a reaction at room temperature with up to 61.4 kcal/mol. In contrast, the activation energy barriers for the isomerization of 6ah to the LiBr complexes of 1-silaallenes was determined to be relatively low at the B3LYP/6-31+G(d,p), M06/6-31+G(d,p), and MP2/6-31+G(d,p) levels. Moreover, we have also investigated the solvent effect on the unsubstituted models using both implicit and explicit solvation models. The energy barriers of the solvated models are found to be slightly higher than the results of gas phase calculations. Additionally, the ring-opening of dimer 6 (6Dim) is also calculated for the ring-opening mechanism with the energy barrier of 3.7 kcal/mol at B3LYP/6-31+G(d,p) level of theory.  相似文献   

16.
Tris(4-N,N-dimethylaminophenyl)antimony dicarboxylates (4-Me2NC6H4)3Sb[OC(O)R]2 (R = C6H4Me-2 (I), C6H4Me-4 (II), CH=CHPh (III)), (4-Me2NC6H4)3Sb[OC(O)C(O)O] (IV), and (4-Me2NC6H4)3Sb[OC(O)C6Cl4C(O)O] (V)) and tris(4-N,N-dimethylaminophenyl)antimony diaroxides (4-Me2NC6H4)3Sb(OAr)2 (Ar = Ph (VI), C6H2Br3-2,4,6 (VII), and C6H3Me2-2,6 (VIII)) have been synthesized by the reaction of tris(4-N,N-dimethylaminophenyl)antimony in ether with carboxylic acids or phenols in the presence of hydrogen peroxide. According to X-ray diffraction analysis data, the Sb atoms in compounds I and VII have a distorted trigonal-bipyramidal coordination, and the axial OSbO angles are 175.4(1)° and 177.9(3)°, respectively. The Sb-O bond lengths are 2.133(3) and 2.142(2) Å in compound I and 2.089(5) Å in compound VII.  相似文献   

17.
Crystal structures of N-furfuryl-N-(3-hydroxybenzyl)amine (1) and N-furfuryl-N-(4-hydroxybenzyl)amine (2) are reported. The furyl ring is coplanar with the C–N–C plane in 1 and perpendicular to the C–N–C plane in 2. Intermolecular O–H ? N and C–H ? O hydrogen bonds stabilize the crystal structures and play a crucial role in crystal packing. In addition, the molecular geometry and molecular vibrations are calculated using the DFT/B3LYP method with the 6-31G(d,p) basis set and the calculated geometrical parameters are correlated with the corresponding experimental data. The obtained HOMO and LUMO energies are negative, indicating that the compounds are in the stable state. FT-IR spectra of compounds 1 and 2 are measured in order to elucidate the spectroscopic properties of the compounds in the spectral range 4000–500 cm?1. The recorded FT-IR spectral measurements are further supported by spectral simulations.  相似文献   

18.
Coordination compounds [CoLCl2] (I), [CuLCl(NO3)] (II), CuL(NO3)2 (III), and CuLCl2 (IV) (where L is a chiral pyrazolylquinoline—a derivative of terpenoid (+)-3-carene) were synthesized. X-ray diffraction data showed that crystal structures I and II are built of mononuclear acentric molecules. In the molecule of complex I, the Co2+ ion coordinates two N atoms of bidentate cycle-forming ligand L and two Cl atoms. The coordination polyhedron of Cl2N2 is a distorted tetrahedron. For complex I, μeff = 4.50 μB, which corresponds to a high-spin configuration d 7. In the molecules of II(1), II(2) (which are diastereoisomers of complex II), each Cu2+ ion coordinates two N atoms of bidentate cycle-forming ligand L, the Cl atom, and two O atoms of bidentate cyclic NO 3 ? ion. The ClN2O2 coordination polyhedra are tetragonal pyramids with different degrees of distortion. The structure of complex II consists of supramolecular clusters, i.e., isolated chains incorporating the molecules of II(1) and II(2). The values of μeff for II–IV correspond to the d 9 configuration. The results of EPR and IR study suggest that complex III contains the O4N2 polyhedron, whereas complex IV contains the Cl2N2 polyhedron. Complexes I and IV were found to show a high catalytic activity in ethylene polymerization reaction.  相似文献   

19.
A new open-cubane MnIII, [{(H2O)MnIIIL}{MnIIIL}]2·2(CH3OH).2(CH3CH2OH)·2Cl, 1 where H 2 L=[N-(2-hydroxyethyl)-3-methoxysalicylaldimine] has been synthesized and characterized by element analysis, FT-IR, solid UV–Vis spectroscopy and single crystal X-ray diffraction. The crystal structure determination shows an open-cubane tetranuclear complex. The Mn1 (Mn1i) ions is hexacoordinate by NO5 donor sets while the Mn2 (Mn2i) is pentacoordinate by NO4 donor sets. The solid state photoluminescence properties of complex 1 and its ligand H 2 L have been investigated under UV light at 349 nm in the visible region. H 2 L exhibits blue emission while complex 1 shows orange-red emission at room temperature. Variable-temperature magnetic susceptibility measurements on the complex 1 in the range 2–300 K indicate an antiferromagnetic interaction.  相似文献   

20.
We report the preparation of bromo-aryl functionalized bis(diphenylphosphino)amine ligands of the type Ph2PNArPPh2 (1, Ar = p-BrC6H4; 2, Ar = p-BrC6H4–C6H4) and their coordination properties. Mono- and dinuclear complexes were formed with Cu(I), Au(I), Pd(II), Pt(II) and tetranuclear cobalt carbonyl clusters were obtained. The crystal structures of [PdCl2(1)] (3), [PdCl2(2)] (4), [(AuCl)(μ-1)] (6), [Co4(CO)5(μ-CO)3(μ-dppa)(μ-1)] (dppa = Ph2PNHPPh2) (8) and [Co4(CO)5(μ-CO)3(μ-dppm)(μ-1)] (dppm = Ph2PCH2PPh2) (9) have been determined by X-ray diffraction. Whereas the diphosphine ligands chelate the metal center in 3 and 4, and in the Pt(II) complex 5 which is analogous to 3, ligand 1 acts as a bridge in 6 where the separation between the two Au(I) centers is 3.0402(5) Å. In the tetranuclear clusters 8 and 9, and in the cluster 10 analogous to 9 with 2 as bridging ligand, two orthogonal Co–Co edges are bridged by a diphosphine ligand and each cobalt center is thus coordinated by one P donor. Complex 3 was shown to react with the Pd(0) complex [Pd(dba)2] (dba = dibenzylideneacetone) to afford a tetranuclear complex resulting from both the insertion of Pd(0) into the ligand C–Br bond and Pd(II)/Pd(0) comproportionation to form a doubly ligand-bridged Pd(I)–Pd(I) core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号