首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shear wave propagation causes microvibrations within a medium; measuring the wave attenuation coefficient, α, and phase velocity, c s , the medium shear modulus, μ, and shear viscosity, η, are determined based on a viscoelastic model that includes both c s and α. The present work compares the performances of nine processing methods, based on cross-correlation and quadrature demodulation, used to extract the motion waveform from a sequence of radio-frequency (RF) echo signals from the medium. Kalman filtering determined the amplitude and the phase of the extracted motion waveform. The comparisons were done with regard to computational simulation and experiments with a gel phantom. Estimates obtained for μ and η of the medium considered different conditions for the vibration amplitude and the signal-to-noise ratio (SNR) of the RF echo signals and the waveform extracted by means of single frequency and shear wave dispersion ultrasound vibration (SDUV) methods. According to the simulated results, the cross-correlation-based processing techniques are more precise and accurate in comparison to quadrature demodulation techniques. The results for c s , α, μ and η of the phantom and those obtained under the same setup conditions for experimental and computational tests agree with each other. Comparing the estimates based on single frequency and SDUV techniques, they presented similar performances at high SNR of the RF echo signal. On the other hand, the former technique prevailed for low SNR.  相似文献   

2.
In this work are presented the results of research on vibrational creep at normal temperature of an aluminum alloy containing magnesium and silicon (designated PA-4). A uni-directional positive load is applied to a tensile-test specimen, such that the stress intensity in the specimen is of the type\(\sigma (t) = \sigma _m (1 + Asin\omega t)\) whereσ m is the mean (static) stress intensity andA =σ a /σ m is the ratio of the vibratory-stress intensity to the mean intensity. The results are given in the form of families of curves of plastic (i.e., permanent) deformation for various values ofA, namely,A=0.0000, 0.0065, 0.05500, 0.1000 and 0.2000. Taking the creep limit for plastic strain as ε p = 1.8 percent, equations for this creep limit were deduced from experimental data. The following conclusions are drawn from these investigations:
  1. 1.
    Vibrations of small-stress-amplitude ratioA encourage creep, particularly with more lengthy tests.  相似文献   

3.
The y-nonlocal Davey–Stewartson II equation is an extension of the usual DS II equation involving a partially parity-time-symmetric potential only with respect to the spatial variable y. By using the Hirota bilinear method, families of n-order rational solutions are obtained, which include lumps in the (xy)-plane and the (yt)-plane, growing-and-decaying line waves in the (xt)-plane, and hybrid solutions of interacting line rogue waves and lumps in the (xy)-plane.  相似文献   

4.
Impact of wall slip on the yield stress measurement is examined for capillary suspensions consisting of cocoa powder as the dispersed phase, vegetable oil as the continuous primary fluid, and water as the secondary fluid using smooth and serrated parallel plates. Using dynamic oscillatory measurements, we investigated the yielding behavior of this ternary solid-fluid-fluid system with varying particle volume fraction, ?, from 0.45 to 0.65 and varying water volume fraction, ?w, from 0.02 to 0.08. Yield stress is defined as the maximum in the elastic stress (Gγ), which is obtained by plotting the product of elastic modulus (G) and strain amplitude (γ) as a function of applied strain amplitude. With serrated plates, which offer minimal slippage, capillary suspensions with ? ≥?0.45 and a fixed ?w =?0.06 showed a two-step yielding behavior as indicated by two peaks in the plots of elastic stress as a function of strain amplitude. On the other hand with smooth plates, the capillary suspensions showed strong evidence of wall slip as evident by the presence of three distinct peaks and lowered first yield stresses for all ? and ?w. These results can be interpreted based on the fact that a particle-depleted layer, which is known to be responsible for slip, is present in the vicinity of the smooth surfaces. The slip layer presents itself as an additional “pseudo-microstructure” (characteristic length scale) besides the two microstructures, aqueous bridges and solid particle agglomerates, that may occur in the system. With serrated plates, both the yield stresses (σ1σ2) and storage moduli plateau at lower strain (before the first yield point) and at higher strain (before the second yield point) (G\(^{\prime }_{p1}\), G\(^{\prime }_{p2}\)) were found to increase with ? (at a fixed ?w =?0.06) following power-law dependences. Similarly with increasing ?w (0.02 – 0.08) at a fixed ? =?0.62, the system behaved as a solid-like material in a jammed state with particles strongly held together as manifested by rapidly increasing σ1 and σ2. The usage of smooth surfaces primarily affected σ1 which was reflected by an approximately 70–90% decrement in the measured σ1 for all values of ?. By contrast, σ2 and G\(^{\prime }_{p2}\) were found to be unaffected as shown by close agreement of values obtained using serrated geometry due to vanishing slip layers at higher strain amplitudes.  相似文献   

5.
Mechanical properties of a hard and stiff W-C coating on steel substrate have been investigated using nanoindentation combined with finite element modeling (FEM) and extended FEM (XFEM). The significant pile-up observed around the indents in steel substrate caused an overestimation of hardness and indentation modulus. A simple geometrical model, considering the additional contact surfaces due to pile-up, has been proposed to reduce this overestimation. The presence of W-C coating suppressed the pile-up in the steel substrate and a transition to sink-in behavior occurred. The FEM simulations adequately reproduced the surface topography of the indents in the substrate and coating/substrate systems as well. The maximum principal stresses of the indented W-C/steel coated system were tensile; they were always located in the coating and evolved in 3 stages. Cohesive cracking occurred during loading in the sink-in zone (stage III) when the ultimate tensile strength (σ max ) of the coating was reached. The obtained hardness (H c ), indentation modulus (E c ), yield stress (Y) and strength (σ max ) of the W-C coating were H c ? =?20 GPa, E c ? =?250 GPa, Y?=?9.0 GPa and σ max ? =?9.35 GPa, respectively. XFEM resulted in fracture energy of the W-C coating of G?=?38.1 J?·?m-2 and fracture toughness of K IC ? =?3.5 MPa?·?m0.5.  相似文献   

6.
In order to experimentally study whether or not the density ratio σ substantially affects flame displacement speed at low and moderate turbulent intensities, two stoichiometric methane/oxygen/nitrogen mixtures characterized by the same laminar flame speed S L = 0.36 m/s, but substantially different σ were designed using (i) preheating from T u = 298 to 423 K in order to increase S L , but to decrease σ, and (ii) dilution with nitrogen in order to further decrease σ and to reduce S L back to the initial value. As a result, the density ratio was reduced from 7.52 to 4.95. In both reference and preheated/diluted cases, direct images of statistically spherical laminar and turbulent flames that expanded after spark ignition in the center of a large 3D cruciform burner were recorded and processed in order to evaluate the mean flame radius \(\bar {R}_{f}\left (t \right )\) and flame displacement speed \(S_{t}=\sigma ^{-1}{d\bar {R}_{f}} \left / \right . {dt}\) with respect to unburned gas. The use of two counter-rotating fans and perforated plates for near-isotropic turbulence generation allowed us to vary the rms turbulent velocity \(u^{\prime }\) by changing the fan frequency. In this study, \(u^{\prime }\) was varied from 0.14 to 1.39 m/s. For each set of initial conditions (two different mixture compositions, two different temperatures T u , and six different \(u^{\prime })\), five (respectively, three) statistically equivalent runs were performed in turbulent (respectively, laminar) environment. The obtained experimental data do not show any significant effect of the density ratio on S t . Moreover, the flame displacement speeds measured at u′/S L = 0.4 are close to the laminar flame speeds in all investigated cases. These results imply, in particular, a minor effect of the density ratio on flame displacement speed in spark ignition engines and support simulations of the engine combustion using models that (i) do not allow for effects of the density ratio on S t and (ii) have been validated against experimental data obtained under the room conditions, i.e. at higher σ.  相似文献   

7.
We consider the asymptotic behavior of solutions of systems of inviscid or viscous conservation laws in one or several space variables, which are almost periodic in the space variables in a generalized sense introduced by Stepanoff and Wiener, which extends the original one of H. Bohr. We prove that if u(x,t) is such a solution whose inclusion intervals at time t, with respect to ?>0, satisfy l epsiv;(t)/t→0 as t→∞, and such that the scaling sequence u T (x,t)=u(T x,T t) is pre-compact as t→∞ in L loc 1(? d +1 +, then u(x,t) decays to its mean value \(\), which is independent of t, as t→∞. The decay considered here is in L 1 loc of the variable ξ≡x/t, which implies, as we show, that \(\) as t→∞, where M x denotes taking the mean value with respect to x. In many cases we show that, if the initial data are almost periodic in the generalized sense, then so also are the solutions. We also show, in these cases, how to reduce the condition on the growth of the inclusion intervals l ?(t) with t, as t→∞, for fixed ? > 0, to a condition on the growth of l ?(0) with ?, as ?→ 0, which amounts to imposing restrictions only on the initial data. We show with a simple example the existence of almost periodic (non-periodic) functions whose inclusion intervals satisfy any prescribed growth condition as ?→ 0. The applications given here include inviscid and viscous scalar conservation laws in several space variables, some inviscid systems in chromatography and isentropic gas dynamics, as well as many viscous 2 × 2 systems such as those of nonlinear elasticity and Eulerian isentropic gas dynamics, with artificial viscosity, among others. In the case of the inviscid scalar equations and chromatography systems, the class of initial data for which decay results are proved includes, in particular, the L generalized limit periodic functions. Our procedures can be easily adapted to provide similar results for semilinear and kinetic relaxations of systems of conservation laws.  相似文献   

8.
It has been long observed that cumbersome parameters are required for the traditional viscoelastic models to describe complex rheological behaviors. Inspired by the relationship between normal and anomalous diffusions, this paper tentatively employs t α to replace t, called as the scaling transformation, in the traditional creep compliance and relaxation modulus. With this methodology, the relaxation modulus is found to agree with the well-known Kohlrausch-Williams-Watts (KWW) stretched exponential function. The fitting results confirm that the proposed models accurately characterize rheological behaviors only with one more parameter α. Moreover, it is noted that the present formulations are directly related to the fractal derivative viscoelastic models and the index α is actually the order of the fractal derivative.  相似文献   

9.
Rheological measurements were performed to examine the yielding behavior of capillary suspensions prepared by mixing cocoa powder as dispersed phase, vegetable oil as the continuous primary fluid, and water as the secondary fluid. Here, we investigated the yielding behavior of solid-fluid-fluid systems with varying particle volume fraction, ?, spanning the regime from a low volume fraction (? = 0.25) to a highly filled regime (? = 0.65) using dynamic oscillatory measurements. While for ? ≤ 0.4 with a fixed water volume fraction (? w ) of 0.06 as the secondary fluid, capillary suspensions exhibited a single yield point due to rupturing of aqueous capillary bridges between the particles, while capillary suspensions with ? ≥ 0.45 showed a two-step yielding behavior. On plotting elastic stress (G γ) as a function of applied strain (γ), two distinct peaks, indicating two yield stresses, were observed. Both the yield stresses and storage modulus at low strains were found to increase with ? following a power law dependence. With increasing ? w (0 – 0.08) at a fixed ? = 0.65, the system shifted to a frustrated, jammed state with particles strongly held together shown by rapidly increasing first and second yield stresses. In particular, the first yield stress was found to increase with ? w following a power law dependence, while the second yield stress was found to increase exponentially with ? w . Transient steady shear tests were also performed. The single stress overshoot for ? ≤ 0.4 with ? w = 0.06 reflected one-step yielding behavior. In contrast, for high ? (≥ 0.45) values with ? w = 0.06, two stress overshoots were observed in agreement with the two-step yielding behavior shown in the dynamic oscillatory measurements. Experiments on the effect of resting time on microstructure recovery demonstrated that aggregates could reform after resting under quiescent conditions.  相似文献   

10.
In the present paper, we use the conformal mapping z/c = ζ?2a sin ζ (a, c?const, ζ = u + iv) of the strip {|v| ≤ v 0, |u| < ∞} onto the domain D, which is a strip with symmetric periodic cuts. For the domain D, in the orthogonal system of isometric coordinates u, v, we solve the plane elasticity problem. We seek the biharmonic function in the form F = C ψ 0 + S ψ*0 + x(C ψ 1 ? S ψ 2) + y(C ψ 2 + S ψ 1), where C(v) and S(v) are the operator functions described in [1] and ψ 0(u), …, ψ 2(u) are the desired functions. The boundary conditions for the function F posed for v = ±v 0 are equivalent to two operator equations for ψ 1(u) and ψ 2(u) and to two ordinary differential equations of first order for ψ 0(u) and ψ*0(u) [2]. By finding the functions ψ j (u) in the form of trigonometric series with indeterminate coefficients and by solving the operator equations, we obtain infinite systems of linear equations for the unknown coefficients. We present an efficient method for solving these systems, which is based on studying stable recursive relations. In the present paper, we give an example of analysis of a specific strip (a = 1/4, v 0 = 1) loaded on the boundary v = v 0 by a normal load of intensity p. We find the particular solutions corresponding to the extension of the strip by the longitudinal force X and to the transverse and pure bending of the strip due to the transverse force Y and the constant moment M , respectively. We also present the graphs of normal and tangential stresses in the transverse cross-section x = 0 and study the stress concentration effect near the cut bottom.  相似文献   

11.
We prove a principle of linearized stability for semiflows generated by neutral functional differential equations of the form x′(t) = g(? x t , x t ). The state space is a closed subset in a manifold of C 2-functions. Applications include equations with state-dependent delay, as for example x′(t) = a x′(t + d(x(t))) + f (x(t + r(x(t)))) with \({a\in\mathbb{R}, d:\mathbb{R}\to(-h,0), f:\mathbb{R}\to\mathbb{R}, r:\mathbb{R}\to[-h,0]}\).  相似文献   

12.
An analytical investigation for a two-dimensional steady, viscous, and incompressible flow past a permeable sphere embedded in another porous medium is presented using the Brinkman model, assuming a uniform shear flow far away from the sphere. Semi-analytical solutions of the problem are derived and relevant quantities such as velocities and shearing stresses on the surface of the sphere are obtained. The streamlines inside and outside the sphere and the radial velocity are shown in several graphs for different values of the porous parameters \({\sigma _1 =(\mu /\tilde {\mu }) (a/\sqrt{K_1 })}\) and \({\sigma _2 =(\mu /\tilde {\mu }) (a/\sqrt{K_2 })}\) , where a is the radius of the sphere, μ is the dynamic viscosity of the fluid, \({\tilde {\mu }}\) is an effective or Brinkman viscosity, while K 1 and K 2 are the permeabilities of the two porous media. It is shown that the dimensionless shearing stress on the sphere is periodic in nature and its absolute value increases with an increase of both porous parameters σ 1 and σ 2.  相似文献   

13.
We study turbulent plane Couette-Poiseuille (CP) flows in which the conditions (relative wall velocity ΔU w ≡ 2U w , pressure gradient dP/dx and viscosity ν) are adjusted to produce zero mean skin friction on one of the walls, denoted by APG for adverse pressure gradient. The other wall, FPG for favorable pressure gradient, provides the friction velocity u τ , and h is the half-height of the channel. This leads to a one-parameter family of one-dimensional flows of varying Reynolds number Re ≡ U w h/ν. We apply three codes, and cover three Reynolds numbers stepping by a factor of two each time. The agreement between codes is very good, and the Reynolds-number range is sizable. The theoretical questions revolve around Reynolds-number independence in both the core region (free of local viscous effects) and the two wall regions. The core region follows Townsend’s hypothesis of universal behavior for the velocity and shear stress, when they are normalized with u τ and h; on the other hand universality is not observed for all the Reynolds stresses, any more than it is in Poiseuille flow or boundary layers. The FPG wall region obeys the classical law of the wall, again for velocity and shear stress. For the APG wall region, Stratford conjectured universal behavior when normalized with the pressure gradient, leading to a square-root law for the velocity. The literature, also covering other flows with zero skin friction, is ambiguous. Our results are very consistent with both of Stratford’s conjectures, suggesting that at least in this idealized flow turbulence theory is successful like it was for the classical logarithmic law of the wall. We appear to know the constants of the law within a 10% bracket. On the other hand, that again does not extend to Reynolds stresses other than the shear stress, but these stresses are passive in the momentum equation.  相似文献   

14.
Based on the finite volume method, the flow past a two-dimensional circular cylinder at a critical Reynolds number (Re = 8.5 × 105) was simulated using the Navier-Stokes equations and the γ-Reθ transition model coupled with the SST k ? ω turbulence model (hereinafter abbreviated as γ-Reθ model). Considering the effect of free-stream turbulence intensity decay, the SST k ? ω turbulence model was modified according to the ambient source term method proposed by Spalart and Rumsey, and then the modified SST k ? ω turbulence model is coupled with the γ-Reθ transition model (hereinafter abbreviated as γ-Reθ-SR model). The flow past a circular cylinder at different inlet turbulence intensities were simulated by the γ-Reθ-SR model. At last, the flow past a circular cylinder at subcritical, critical and supercritical Reynolds numbers were each simulated by the γ-Reθ-SR model, and the three flow states were analyzed. It was found that compared with the SST k ? ω turbulence model, the γ-Reθ model could simulate the transition of laminar to turbulent, resulting in better consistency with experimental result. Compared with the γ-Reθ model, for relatively high inlet turbulence intensities, the γ-Reθ-SR model could better simulate the flow past a circular cylinder; however the improvement almost diminished for relatively low inlet turbulence intensities The γ-Reθ-SR model could well simulate the flow past a circular cylinder at subcritical, critical and supercritical Reynolds numbers.  相似文献   

15.
We study the values e σ(f) of the best approximation of integrals of functions from the spaces L p (A, dμ) by integrals of rank σ. We determine the orders of the least upper bounds of these values as σ → ∞ in the case where the function ? is the product of two nonnegative functions one of which is fixed and the other varies on the unit ball U p (A) of the space L p (A, dμ). We consider applications of the obtained results to approximation problems in the spaces S p ? .  相似文献   

16.
Even though the rheological behavior of aqueous graphene oxide (G-O) dispersions has been shown to be strongly time-dependent, only few transient measurements have been reported in the literature. In this work, we attempt to fill the gap between transient and steady shear rheological characterizations of aqueous G-O dispersions in the concentration range of 0.004 < ? <?3.5 wt%, by conducting comprehensive rheological measurements, including oscillatory shear flow, transient shear flow, and steady shear flow. Steady shear measurements have been performed after the evaluation of transient properties of the G-O dispersions, to assure steady-state conditions. We identify the critical concentration ? c =?0.08 wt% (where G-O sheets start to interact) from oscillatory shear experiments. We find that the rheology of G-O dispersions strongly depends on the G-O concentration ?. Transient measurements of shear viscosity and first normal stress difference suggest that G-O dispersions behave like nematic polymeric liquid crystals at ?/? c =?25, in agreement with other work reported in the literature. G-O dispersions also display a transition from negative to positive values of the first normal stress difference with increasing shear rates. Experimental findings of aqueous graphene oxide dispersions are compared and discussed with models and experiments reported for nematic polymeric liquid crystals, laponite, and organoclay dispersions.  相似文献   

17.
In this work, the linear viscoelastic behavior of some low-density polyethylene in the melt is used to obtain their architecture. In this way, the number of branches per molecule and long chain branching (LCB) content is determined. For this purpose, a method based on the molecular dynamics of simple star-shaped molecules is presented. It allows one to infer the topology of an average molecule through a set of 2N c parameters {C n i , the number concentration of a level i} and {M bi , the mass of a segment of level i} representing an irregular Cayley tree with N c levels. The inverse problem uses the complex shear modulus as a function of the frequency data along with a minimization algorithm. Results from the present method are compared with NMR and SEC measurements of the level of branching. It appears that SEC and rheology leads to similar results on the determination of LCB while NMR overestimate the number of branch points per molecule. Moreover, rheology allows one to go further than the basic evaluation of LCB content and shows a picture of the structure of the molecules that is in agreement with the kinetics of free radical polymerization of polyethylene.  相似文献   

18.
Relations for two-dimensional ideal plasticity problems under the full plasticity condition are determined with material anisotropy, inhomogeneity, and compressibility properties taken into account. These properties are determined by the direction cosines of the principal stress, the coordinates of points in space, and the mean stress.For the yield strength we take a function of the form k = k(σ, n 1, n 2, n 3, x, y, z). The desired relations are determined for the general plane ideal plasticity problem. The relations thus obtained are generalized to the cases of axisymmetric and spherical plasticity problems.  相似文献   

19.
Wall-bounded turbulent flows over surfaces with spanwise heterogeneous surface roughness – that is, spanwise-adjacent patches of relatively high and low roughness – exhibit mean flow phenomena entirely different to what would otherwise exist in the absence of spanwise heterogeneity. In the outer layer, mean counter-rotating rolls occupy the depth of the flow, and are positioned such that “upwelling” and “downwelling” occurs above the low and high roughness, respectively. It has been comprehensively shown that these secondary flows are Prandtl’s secondary flow of the second kind (Anderson et al., J. Fluid Mech. 768, 316–347 2015). This behaviour indicates that spanwise spacing, s y , between adjacent patches of high and low roughness is, itself, a problem parameter; in this study, we have systematically assessed how s y affects turbulence structure in high Reynolds number channel flows via two-point correlations. “High roughness” is imposed with streamwise-aligned pyramid elements with height, h, selected to be ≈ 5% of the channel half height, H. For \(s_{y}/H \gtrsim 1\), we find that the aforementioned domain-scale mean circulations exist and the surface may be regarded as a topography. For s y /H ? 0.2, turbulence statistics show characteristics very similar to a homogeneous roughness and thus the surface may be regarded as a roughness. For 0.2 ? s y /H ? 2, the spatial extent of the counter-rotating rolls is controlled by proximity to adjacent rows, and we define such surfaces as being intermediate. We refer to such surfaces as intermediate state.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号