首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We construct solutions of higher-dimensional Einstein gravity coupled to nonlinear \(\sigma \)-model with cosmological constant. The \(\sigma \)-model can be perceived as exterior configuration of a spontaneously-broken \(SO(D-1)\) global higher-codimensional “monopole”. Here we allow the kinetic term of the \(\sigma \)-model to be noncanonical; in particular we specifically study a quadratic-power-law type. This is some possible higher-dimensional generalization of the Bariola–Vilenkin (BV) solutions with k-global monopole studied recently. The solutions can be perceived as the exterior solution of a black hole swallowing up noncanonical global defects. Even in the absence of comological constant its surrounding spacetime is asymptotically non-flat; it suffers from deficit solid angle. We discuss the corresponding horizons. For \(\Lambda >0\) in 4d there can exist three extremal conditions (the cold, ultracold, and Nariai black holes), while in higher-than-four dimensions the extremal black hole is only Nariai. For \(\Lambda <0\) we only have black hole solutions with one horizon, save for the 4d case where there can exist two horizons. We give constraints on the mass and the symmetry-breaking scale for the existence of all the extremal cases. In addition, we also obtain factorized solutions, whose topology is the direct product of two-dimensional spaces of constant curvature (\(M_2\), \(dS_2\), or \(AdS_2\)) with (D-2)-sphere. We study all possible factorized channels.  相似文献   

2.
We show that the low frequency absorption cross section of minimally coupled test massless scalar fields by extremal spherically symmetric black holes in d dimensions is equal to the horizon area, even in the presence of string-theoretical \(\alpha '\) corrections. Classically one has the relation \(\sigma = 4 GS\) between that absorption cross section and the black hole entropy. By comparing in each case the values of the horizon area and Wald’s entropy, we discuss the validity of such relation in the presence of higher derivative corrections for extremal black holes in many different contexts: in the presence of electric and magnetic charges; for nonsupersymmetric and supersymmetric black holes; in \(d=4\) and \(d=5\) dimensions. The examples we consider seem to indicate that this relation is not verified in the presence of \(\alpha '\) corrections in general, although being valid in some specific cases (electrically charged maximally supersymmetric black holes in \(d=5\)). We argue that the relation \(\sigma = 4 GS\) should in general be valid for the absorption cross section of scalar fields which, although being independent from the black hole solution, have their origin from string theory, and therefore are not minimally coupled.  相似文献   

3.
We study the PV criticality and phase transition in the extended phase space of anti-de Sitter (AdS) black holes in higher-dimensional de Rham, Gabadadze and Tolley (dRGT) massive gravity, treating the cosmological constant as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Besides the usual small/large black hole phase transitions, the interesting thermodynamic phenomena of reentrant phase transitions (RPTs) are observed for black holes in all \(d\ge 6\)-dimensional spacetime when the coupling coefficients \(c_i m^2\) of massive potential satisfy some certain conditions.  相似文献   

4.
In Einstein gravity, gravitational potential goes as \(1/r^{d-3}\) in d non-compactified spacetime dimensions, which assumes the familiar 1 / r form in four dimensions. On the other hand, it goes as \(1/r^{\alpha }\), with \(\alpha =(d-2m-1)/m\), in pure Lovelock gravity involving only one mth order term of the Lovelock polynomial in the gravitational action. The latter offers a novel possibility of having 1 / r potential for the non-compactified dimension spectrum given by \(d=3m+1\). Thus it turns out that in the two prototype gravitational settings of isolated objects, like black holes and the universe as a whole – cosmological models, the Einstein gravity in four and mth order pure Lovelock gravity in \(3m+1\) dimensions behave in a similar fashion as far as gravitational interactions are considered. However propagation of gravitational waves (or the number of degrees of freedom) does indeed serve as a discriminator because it has two polarizations only in four dimensions.  相似文献   

5.
The K--induced production of \( \Lambda\)(1405) is investigated in K - d \( \rightarrow\) \( \pi\) \( \Sigma\) n reactions based on coupled-channels chiral dynamics, in order to discuss the resonance position of the \( \Lambda\)(1405) in the \( \bar{{K}}\) N channel. We find that the K - d \( \rightarrow\) \( \Lambda\)(1405)n process favors the production of \( \Lambda\)(1405) initiated by the \( \bar{{K}}\) N channel. The present approach indicates that the \( \Lambda\)(1405) -resonance position is 1420MeV rather than 1405MeV in the \( \pi\) \( \Sigma\) invariant-mass spectra of K - d \( \rightarrow\) \( \pi\) \( \Sigma\) n reactions. This is consistent with an observed spectrum of the K - d \( \rightarrow\) \( \pi^{{+}}_{}\) \( \Sigma^{{-}}_{}\) n with 686-844MeV/c incident K- by bubble chamber experiments done in the 70s. Our model also reproduces the measured \( \Lambda\)(1405) production cross-section.  相似文献   

6.
We consider a general two-component plasma of classical pointlike charges \(+e\) (e is say the elementary charge) and \(-Z e\) (valency \(Z=1,2,\ldots \)), living on the surface of a sphere of radius R. The system is in thermal equilibrium at the inverse temperature \(\beta \), in the stability region against collapse of oppositely charged particle pairs \(\beta e^2 < 2/Z\). We study the effect of the system excess charge Qe on the finite-size expansion of the (dimensionless) grand potential \(\beta \varOmega \). By combining the stereographic projection of the sphere onto an infinite plane, the linear response theory and the planar results for the second moments of the species density correlation functions we show that for any \(\beta e^2 < 2/Z\) the large-R expansion of the grand potential is of the form \(\beta \varOmega \sim A_V R^2 + \left[ \chi /6 - \beta (Qe)^2/2\right] \ln R\), where \(A_V\) is the non-universal coefficient of the volume (bulk) part and the Euler number of the sphere \(\chi =2\). The same formula, containing also a non-universal surface term proportional to R, was obtained previously for the disc domain (\(\chi =1\)), in the case of the symmetric \((Z=1)\) two-component plasma at the collapse point \(\beta e^2=2\) and the jellium model \((Z\rightarrow 0)\) of identical e-charges in a fixed neutralizing background charge density at any coupling \(\beta e^2\) being an even integer. Our result thus indicates that the prefactor to the logarithmic finite-size expansion does not depend on the composition of the Coulomb fluid and its non-universal part \(-\beta (Qe)^2/2\) is independent of the geometry of the confining domain.  相似文献   

7.
In the present work we study strange stars in f(R) theories of gravity in the Palatini formalism. We consider two concrete well-known cases, namely the \(R+R^2/(6 M^2)\) model as well as the \(R-\mu ^4/R\) model for two different values of the mass parameter M or \(\mu \). We integrate the modified Tolman–Oppenheimer–Volkoff equations numerically, and we show the mass-radius diagram for each model separately. The standard case corresponding to the General Relativity is also shown in the same figure for comparison. Our numerical results show that the interior solution can be vastly different depending on the model and/or the value of the parameter of each model. In addition, our findings imply that (i) for the cosmologically interesting values of the mass scales \(M,\mu \) the effect of modified gravity on strange stars is negligible, while (ii) for the values predicting an observable effect, the modified gravity models discussed here would be ruled out by their cosmological effects.  相似文献   

8.
We study the screening length \(L_{\mathrm{max}}\) of a moving quark–antiquark pair in a hot plasma, which lives in a two sphere, \(S^2\), using the AdS/CFT correspondence in which the corresponding background metric is the four-dimensional Schwarzschild–AdS black hole. The geodesic of both ends of the string at the boundary, interpreted as the quark–antiquark pair, is given by a stationary motion in the equatorial plane by which the separation length L of both ends of the string is parallel to the angular velocity \(\omega \). The screening length and total energy H of the quark–antiquark pair are computed numerically and show that the plots are bounded from below by some functions related to the momentum transfer \(P_c\) of the drag force configuration. We compare the result by computing the screening length in the reference frame of the moving quark–antiquark pair, in which the background metrics are “Boost-AdS” and Kerr–AdS black holes. Comparing both black holes, we argue that the mass parameters \(M_{\mathrm{Sch}}\) of the Schwarzschild–AdS black hole and \(M_{\mathrm{Kerr}}\) of the Kerr–AdS black hole are related at high temperature by \(M_{\mathrm{Kerr}}=M_{\mathrm{Sch}}(1-a^2l^2)^{3/2}\), where a is the angular momentum parameter and l is the AdS curvature.  相似文献   

9.
We investigate the gauge/gravity duality between the \(\mathcal{N} = 6\) mass-deformed ABJM theory with \(\hbox {U}_k(N)\times \hbox {U}_{-k}(N)\) gauge symmetry and the 11-dimensional supergravity on LLM geometries with SO(2,1)\(\times \)SO(4)/\({\mathbb {Z}}_k\) \(\times \)SO(4)/\({\mathbb {Z}}_k\) isometry, in terms of a KK holography, which involves quadratic order field redefinitions. We establish the quadratic order KK mappings for various gauge invariant fields in order to obtain the canonical 4-dimensional gravity equations of motion and to reduce the LLM solutions to an asymptotically AdS\(_4\) gravity solutions. The non-linearity of the KK maps indicates that we can observe the true purpose of the non-linear KK holography of the LLM solutions. We read the vacuum expectation value of conformal dimension two operator from the asymptotically AdS\(_4\) gravity solutions. For the LLM solutions which are represented by square-shaped Young diagrams, we compare the vacuum expectation value obtained from the holographic procedure with the result obtained from the field theory, which is given by \(\langle \mathcal{O}^{(\Delta =2)}\rangle =\sqrt{k}N^{\frac{3}{2}}f_{(\Delta =2)}+\mathcal{O}(N)\), where \(f_{\Delta }\) is independent of N. Based on this result, we examine the gauge/gravity duality in the large N limit and finite k. We also show that the vacuum expectation values of the massive KK graviton modes are vanishing as expected by the supersymmetry.  相似文献   

10.
Following Flory’s ideality hypothesis, the chemical potential of a test chain of length n immersed into a dense solution of chemically identical polymers of length distribution P(N) is extensive in n . We argue that an additional contribution \( \delta\) \( \mu_{{{\rm c}}}^{}\)(n) ~ +1/\( \rho\) \( \sqrt{{n}}\) arises (\( \rho\) being the monomer density) for all P(N) if n ? 〈N〉 which can be traced back to the overall incompressibility of the solution leading to a long-range repulsion between monomers. Focusing on Flory-distributed melts, we obtain \( \delta\) \( \mu_{{{\rm c}}}^{}\)(n) \( \approx\) (1 - 2n/〈N〉)/\( \rho\) \( \sqrt{{n}}\) for n ? 〈N2 , hence, \( \delta\) \( \mu_{{{\rm c}}}^{}\)(n) \( \approx\) -1/\( \rho\) \( \sqrt{{n}}\) if n is similar to the typical length of the bath 〈N〉 . Similar results are obtained for monodisperse solutions. Our perturbation calculations are checked numerically by analyzing the annealed length distribution P(N) of linear equilibrium polymers generated by Monte Carlo simulation of the bond fluctuation model. As predicted we find, e.g., the non-exponentiality parameter K p \( \equiv\) 1 - 〈N p〉/p!〈Np to decay as K p \( \approx\) 1/\( \sqrt{{\langle N \rangle }}\) for all moments p of the distribution.  相似文献   

11.
Let \(P_n\) and \(Q_n\) be two probability measures representing two different probabilistic models of some system (e.g., an n-particle equilibrium system, a set of random graphs with n vertices, or a stochastic process evolving over a time n) and let \(M_n\) be a random variable representing a “macrostate” or “global observable” of that system. We provide sufficient conditions, based on the Radon–Nikodym derivative of \(P_n\) and \(Q_n\), for the set of typical values of \(M_n\) obtained relative to \(P_n\) to be the same as the set of typical values obtained relative to \(Q_n\) in the limit \(n\rightarrow \infty \). This extends to general probability measures and stochastic processes the well-known thermodynamic-limit equivalence of the microcanonical and canonical ensembles, related mathematically to the asymptotic equivalence of conditional and exponentially-tilted measures. In this more general sense, two probability measures that are asymptotically equivalent predict the same typical or macroscopic properties of the system they are meant to model.  相似文献   

12.
In this paper, we study the heat engine where a charged AdS black hole surrounded by dark energy is the working substance and the mechanical work is done via the PdV term in the first law of black hole thermodynamics in the extended phase space. We first investigate the effects of a kind of dark energy (quintessence field in this paper) on the efficiency of the RN-AdS black holes as the heat engine defined as a rectangular closed path in the PV plane. We get the exact efficiency formula and find that the quintessence field can improve the heat engine efficiency, which will increase as the field density \(\rho _q\) grows. At some fixed parameters, we find that a larger volume difference between the smaller black holes(\(V_1\)) and the bigger black holes(\(V_2\) ) will lead to a lower efficiency, while the bigger pressure difference \(P_1-P_4\) will make the efficiency higher, but it is always smaller than 1 and will never be beyond the Carnot efficiency, which is the maximum value of the efficiency constrained by thermodynamics laws; this is consistent to the heat engine in traditional thermodynamics. After making some special choices for the thermodynamical quantities, we find that the increase of the electric charge Q and the normalization factor a can also promote the heat engine efficiency, which would infinitely approach the Carnot limit when Q or a goes to infinity.  相似文献   

13.
In this work, we study systematically the mass splittings of the \(qq\bar{Q}\bar{Q}\) (\(q=u\), d, s and \(Q=c\), b) tetraquark states with the color-magnetic interaction by considering color mixing effects and estimate roughly their masses. We find that the color mixing effect is relatively important for the \(J^P=0^+\) states and possible stable tetraquarks exist in the \(nn\bar{Q}\bar{Q}\) (\(n=u\), d) and \(ns\bar{Q}\bar{Q}\) systems either with \(J=0\) or with \(J=1\). Possible decay patterns of the tetraquarks are briefly discussed.  相似文献   

14.
Weak gravitational lensing by black holes and wormholes in the context of massive gravity (Bebronne and Tinyakov, JHEP 0904:100, 2009) theory is studied. The particular solution examined is characterized by two integration constants, the mass M and an extra parameter S namely ‘scalar charge’. These black hole reduce to the standard Schwarzschild black hole solutions when the scalar charge is zero and the mass is positive. In addition, a parameter \(\lambda \) in the metric characterizes so-called ‘hair’. The geodesic equations are used to examine the behavior of the deflection angle in four relevant cases of the parameter \(\lambda \). Then, by introducing a simple coordinate transformation \(r^\lambda =S+v^2\) into the black hole metric, we were able to find a massless wormhole solution of Einstein–Rosen (ER) (Einstein and Rosen, Phys Rev 43:73, 1935) type with scalar charge S. The programme is then repeated in terms of the Gauss–Bonnet theorem in the weak field limit after a method is established to deal with the angle of deflection using different domains of integration depending on the parameter \(\lambda \). In particular, we have found new analytical results corresponding to four special cases which generalize the well known deflection angles reported in the literature. Finally, we have established the time delay problem in the spacetime of black holes and wormholes, respectively.  相似文献   

15.
We investigate the horizon structure and ergosphere in a rotating Bardeen regular black hole, which has an additional parameter (g) due to the magnetic charge, apart from the mass (M) and the rotation parameter (a). Interestingly, for each value of the parameter g, there exists a critical rotation parameter (\(a=a_{E}\)), which corresponds to an extremal black hole with degenerate horizons, while for \(a<a_{E}\) it describes a non-extremal black hole with two horizons, and no black hole for \(a>a_{E}\). We find that the extremal value \(a_E\) is also influenced by the parameter g, and so is the ergosphere. While the value of \(a_E\) remarkably decreases when compared with the Kerr black hole, the ergosphere becomes thicker with the increase in g. We also study the collision of two equal mass particles near the horizon of this black hole, and explicitly show the effect of the parameter g. The center-of-mass energy (\(E_\mathrm{CM}\)) not only depend on the rotation parameter a, but also on the parameter g. It is demonstrated that the \(E_\mathrm{CM}\) could be arbitrarily high in the extremal cases when one of the colliding particles has a critical angular momentum, thereby suggesting that the rotating Bardeen regular black hole can act as a particle accelerator.  相似文献   

16.
We consider two ensembles of \(0-1\) \(n\times n\) matrices. The first is the set of all \(n\times n\) matrices with entries zeroes and ones such that all column sums and all row sums equal r, uniformly weighted. The second is the set of \(n \times n\) matrices with zero and one entries where the probability that any given entry is one is r / n, the probabilities of the set of individual entries being i.i.d.’s. Calling the two expectation values E and \(E_B\) respectively, we develop a formal relation
$$\begin{aligned} E({{\mathrm{perm}}}(A)) = E_B({{\mathrm{perm}}}(A)) e^{\sum _2 T_i}.\quad \quad \quad \quad \mathrm{(A1)} \end{aligned}$$
We use two well-known approximating ensembles to E, \(E_1\) and \(E_2\). Replacing E by either \(E_1\) or \(E_2\) we can evaluate all terms in (A1). For either \(E_1\) or \(E_2\) the terms \(T_i\) have amazing properties. We conjecture that all these properties hold also for E. We carry through a similar development treating \(E({{\mathrm{perm}}}_m(A))\), with m proportional to n, in place of \(E({{\mathrm{perm}}}(A))\).
  相似文献   

17.
In this paper, we take into account the dilaton black hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. First of all, we consider the cosmological constant and nonlinear parameter as thermodynamic quantities which can vary. We obtain thermodynamic quantities of the system such as pressure, temperature and Gibbs free energy in an extended phase space. We complete the analogy of the nonlinear dilaton black holes with the Van der Waals liquid–gas system. We work in the canonical ensemble and hence we treat the charge of the black hole as an external fixed parameter. Moreover, we calculate the critical values of temperature, volume and pressure and show that they depend on the dilaton coupling constant as well as on the nonlinear parameter. We also investigate the critical exponents and find that they are universal and independent of the dilaton and nonlinear parameters, which is an expected result. Finally, we explore the phase transition of nonlinear dilaton black holes by studying the Gibbs free energy of the system. We find that in the case of \(T>T_c\), we have no phase transition. When \(T=T_c\), the system admits a second-order phase transition, while for \(T=T_\mathrm{f}<T_c\) the system experiences a first-order transition. Interestingly, for \(T_\mathrm{f}<T<T_c\) we observe a zeroth-order phase transition in the presence of a dilaton field. This novel zeroth-order phase transition occurs due to a finite jump in the Gibbs free energy which is generated by the dilaton–electromagnetic coupling constant, \(\alpha \), for a certain range of pressure.  相似文献   

18.
We test the holographic relation between the vacuum expectation values of gauge invariant operators in \({\mathcal {N}} = 6\) U\(_k(N)\times \mathrm{U}_{-k}(N)\) mass-deformed ABJM theory and the LLM geometries with \({\mathbb {Z}}_k\) orbifold in 11-dimensional supergravity. To do so, we apply the Kaluza–Klein reduction to construct a 4-dimensional gravity theory and implement the holographic renormalization procedure. We obtain an exact holographic relation for the vacuum expectation values of the chiral primary operator with conformal dimension \(\Delta = 1\), which is given by \(\langle {\mathcal {O}}^{(\Delta =1)}\rangle = N^{\frac{3}{2}} \, f_{(\Delta =1)}\), for large N and \(k=1\). Here the factor \(f_{(\Delta )}\) is independent of N. Our results involve an infinite number of exact dual relations for all possible supersymmetric Higgs vacua and so provide a non-trivial test of gauge/gravity duality away from the conformal fixed point. We extend our results to the case of \(k\ne 1\) for LLM geometries represented by rectangular-shaped Young diagrams. We also discuss the exact mapping of the gauge/gravity at finite N for classical supersymmetric vacuum solutions in field theory side and corresponding classical solutions in gravity side.  相似文献   

19.
20.
We study the asymptotics of large, simple, labeled graphs constrained by the densities of two subgraphs. It was recently conjectured that for all feasible values of the densities most such graphs have a simple structure. Here we prove this in the special case where the densities are those of edges and of k-star subgraphs, \(k\ge 2\) fixed. We prove that under such constraints graphs are “multipodal”: asymptotically in the number of vertices there is a partition of the vertices into \(M < \infty \) subsets \(V_1, V_2, \ldots , V_M\), and a set of well-defined probabilities \(g_{ij}\) of an edge between any \(v_i \in V_i\) and \(v_j \in V_j\). For \(2\le k\le 30\) we determine the phase space: the combinations of edge and k-star densities achievable asymptotically. For these models there are special points on the boundary of the phase space with nonunique asymptotic (graphon) structure; for the 2-star model we prove that the nonuniqueness extends to entropy maximizers in the interior of the phase space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号