首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 376 毫秒
1.
Pyridyl–tetrazole ligands 2-(5-(pyridin-2-yl)-1H-tetrazol-1-yl)acetamide (L1), 2-(5-(pyridin-2-yl)-2H-tetrazol-2-yl)acetamide (L2), 2-(5-(pyridin-2-yl)-1H-tetrazol-1-yl)acetohydrazide (L3) and 2-(5-(pyridin-2-yl)-2H-tetrazol-2-yl)acetohydrazide (L4) have been prepared and coordinated with CuCl2·2H2O to furnish the corresponding complexes [Cu(L1) 2 ]–[Cu(L4) 2 ]. EPR spectra of the complexes are characteristic of square planar geometries, with nuclear hyperfine spin 3/2. DNA-binding studies using UV–Vis absorption spectroscopy, viscosity and thermal denature studies revealed that all of these complexes are avid binders of calf thymus DNA. The antioxidant properties of the free ligands and the Cu(II) complexes were investigated using the p-nitrosodimethyl aniline hydroxyl radical scavenging method, and [Cu(L4) 2 ] was found to show the highest activity.  相似文献   

2.
195Pt, 1H, and 13C NMR spectroscopy was used to study the structure of binuclear platinum(III) acetamidate complexes with 1,10-phenanthroline and 2,2′-bipyridine ligands [Pt2(phen)2(acam)4](NO3)2 (1) and [Pt2(bipy)2(acam)4](NO3)2 (2) in aqueous solutions. The 195Pt NMR spectra of solutions of complexes 1 and 2 in D2O exhibit two signals with satellites due to the 195Pt–195Pt spin-spin coupling (1 J(Pt–Pt) ≈ 6345 Hz), whereas their 1H and 13C NMR spectra contain four sets of signals for the protons and the carbon atoms of the heterocyclic and acetamidate ligands. The signals were assigned using the COSY, NOESY, and HSQC/ HMBC experiments and comparing the coordination shifts of the signals for the protons of heterocycles. These data allowed us to draw a conclusion that binuclear complexes 1 and 2 in solution have a head-to-head structure with nonequivalent platinum(III) atoms (coordination cores PtN5 and PtN3O2), the axial-equatorial coordination of the bidentate heterocyclic molecules, and two bridging and two terminal acetamidate ligands.  相似文献   

3.
A series of twist linear tetranuclear 3d–4f Co 2 III Ln 2 III [Ln = Gd (1), Tb (2), Dy (3), Ho (4), Er (5)] complexes have been prepared under solvothermal conditions and structurally characterized with Schiff-base ligand 2-(((2-hydroxy-3-methoxyphenyl)methylene)amino)-2-(hydroxymethyl)-1,3-propanediol (H4L). The two central Co ions are linked by two alkoxyl oxygen atoms, and one Ln ion lying above and the other below the Co–Co dimer, form a twist linear array. The magnetic susceptibility studies reveal antiferromagnetic or ferromagnetic behaviour, whilst dynamic magnetic studies indicate no slow magnetic relaxation for these complexes.  相似文献   

4.
Solvothermal reactions of 2-ppds (2-ppds = di[4-(pyridin-2-yl)pyrimidinyl]disulfide) with ZnX2 (X = Cl, ClO4) in mixed CH3OH–CH2Cl2 solvent have been investigated. To better understand these reactions, solution analysis was conducted in parallel with single-crystal X-ray diffraction analysis of the in situ generated coordination complexes. At 120 °C, solvothermal reaction of 2-ppds with ZnCl2 resulted in a discrete mononuclear coordination complex formulated as [ZnCl2(L1)] (1), in which the zwitterion L1 (1-methyl-4-(pyridin-2-yl)pyrimidin-1-ium-2-olate) was formed in situ from 2-ppds, and solution analyses based on TLC and ESI–MS further showed that the reaction solution also contains in situ transformed products of L2 (bis(4-(pyridin-2-yl)pyrimidin-2-yl)sulfane) and L3 (2-methoxy-4-(pyridin-2-yl)pyrimidine). At 90 °C, solvothermal reaction between 2-ppds and Zn(ClO4)2 led to a discrete mononuclear coordination complex formulated as [Zn(SH)(L2)]ClO4 (2) that features a terminally bound –SH group, while the reaction solution was also found to contain a library of in situ reaction products of 2-ppds including L1, L2, L3 and L4 ((4-(pyridin-2-yl)pyrimidin-2-yl) 4-(pyridin-2-yl)pyrimidine-2-sulfonothioate). Thus, the heterocyclic disulfide 2-ppds is transformed in situ into various organic products in a series of reactions involving C–S/S–S bond cleavage.  相似文献   

5.
Two polymeric frameworks, [Zn(Dpb)(Oba)] n (Ι) and [Cd(Dpb)(2,6-Pda)H2O] n · nH2O (II) (Dpb = 1,4-bis(pyridin-3-ylmethoxy)benzene, H2Oba = 4,4'-oxybis(benzoic acid), 2,6-H2Pda = 2,6-pyridyl-dicarboxylate), have been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction method (CIF files CCDC 1488269 (Ι), 1488270 (II)). Complex Ι is a 2D layer structure, which is constructed from 1D double chain. Complex II is a 1D chain. The luminescent properties of Ι, II have been investigated with fluorescent spectra in the solid state, I and II displayed a strong fluorescent emission at room temperature.  相似文献   

6.
React of cadmium salts with 4,4'-bis((2-(pyridin-2-yl)-1H-benzo[d]imidazol-1-yl)methyl)biphenyl (Bpbib) yields two one-dimensional (1D) coordination architectures of two new complexes—{[Cd2(Bpbib)2(NO3)4] ? CH3OH} n (I) and {[Cd(Bpbib)Cl2] ? 2CH3OH} n (II). Complexes I and II were characterized by the elemental analyses, photoluminescence and emission spectra and single-crystal X-ray diffraction (CIF files CCDC nos. 1046021 (I), 1046022 (II)). Complex I is a helical array, whereas II features a zigzag pattern, depending upon the type of their associated anions. In addition to the primary organic linker, the counter anions also have a dominant influence on the overall structures, and even arouse the luminescence performance diversity.  相似文献   

7.
A reaction of digallane [(dpp-bian)Ga—Ga(dpp-bian)] (1) (dpp-bian is the 1,2-bis[(2,6-disopropylphenyl)imino]acenaphthene) with one equivalent of I2 leads to oxidation of (dpp-bian)2– in compound 1 to (dpp-bian)–and gives [(dpp-bian)GaI—GaI(dpp-bian)] (2). In the reaction of compound 2 with two equivalents of (acac)Na, not only exchange of the iodide and acetylacetonate ions takes place, but also a transfer of electrons from the metal—metal bond to dpp-bian with the formation of the complex [(dpp-bian)Ga(acac)] (3), in which the dpp-bian ligand is a dianion. A reaction of digallane 1 with 2,2´-bipyridyl at 200 °C in toluene in a sealed tube leads to the reduction of 2,2´-bipyridyl and gives the complex [(dpp-bian)Ga(bipy)] (4), which contains two different chelate redox-active ligands. The new compounds were characterized by IR (3, 4), NMR (3), and ESR spectra (4), the structures of both derivatives were established by X-ray diffraction.  相似文献   

8.
Four new complexes [M(3-tba)2(H2O)4] (13) and [Co(4-tba)2(H2O)4] (4) {M = Zn (1), Ni (2), Co (3), 3-Htba = 3-(1H-1,2,4-triazol-1-yl)benzoic acid, 4-Htba = 4-(1H-1,2,4-triazol-1-yl)benzoic acid} have been synthesized under solvothermal conditions and structurally characterized by single crystal X-ray diffraction. Complexes 14 are also determined by elemental analysis, X-ray powder diffraction, IR and electronic spectroscopy. Single crystal X-ray diffraction reveals that complexes 13 are isostructural and they crystallize in the orthorhombic space group of Pbca, while complex 4 belongs to triclinic system with Pī space group. Based on different intermolecular hydrogen bonding and π···π stacking interactions, complexes 14 further assembled into 3D supramolecular frameworks. Hirshfeld surface analysis was used to further study the intermolecular interactions of the complexes. The thermogravimetric analyses (TGA) reveal that these complexes possess good thermal stability, and the differential scanning calorimetry (DSC) analyses show intense exothermic phenomena in the decomposition processes of triazole groups. Besides, the photoluminescence property of complex 1 in the solid state is also determined.  相似文献   

9.
The cation-induced aggregation of sandwich crown-substituted complexes [Ln(R4Pc)2] (Ln = Lu (I) and Yb (II), R4Pc2? is the 4,5,4′,5′,4″,5″,4?,5?-tetrakis(1,4,7,10,13-pentaoxatridecamethylene)phthalocyaninate ion) and Ln2(R4Pc)3(Ln = Lu (III) and Yb (IV) in a CDCl3-DMSO-d 6 solution has been studied by 1H NMR. The data obtained are consistent with the conclusions concerning the composition of supramolecular aggregates drawn from spectrophotometric titration data. The molecules of double-decker complexes I and II form supramolecular oligomers, whereas triple-decker complexes III and IV form supramolecular dimers, which is presumably due to the stronger distortion of the planes of the outer decks of the triple-decker complexes as compared to their double-decker analogues.  相似文献   

10.
Reduction of digallane (dpp-bian)Ga—Ga(dpp-bian) (1) (dpp-bian is the 1,2-bis[(2,6-di-isopropylphenyl)imino]acenaphthene dianion) with metallic sodium in THF leads to the formation of gallylsodium (dpp-bian)Ga—Na(thf)4 (2). Reduction of digallane 1 with dicyclopentadienyltetracarbonyldiiron, vanadocene, and nickelocene furnishes the corresponding gallyl complexes (dpp-bian)Ga—FeCp(CO)2 (3), (dpp-bian)Ga—VCp2 (4) and [(dpp-bian)Ga]2NiCp (5). The reaction of 1 with Cp2Mn gives a gallium-free complex (dpp-bian)MnCp(dme) (6). Carbonylates [{(dpp-bian)Ga—M(CO)5}{Na(thf)2}]2 (M = Cr (7), W (8)) and [{(dppbian)Ga}2FeCp(CO)][Na(dme)3] (9) were obtained by the reaction of carbonyls Cr(CO)6, W(CO)6, and [CpFe(CO)2]2 with compound 2. Diamagnetic derivatives 3, 7, 8, and 9 were characterized by 1H NMR spectra. The structures of products 3—9 were established by single crystal X-ray diffraction.  相似文献   

11.
In the present work, catecholase activity is presented. The complexes were prepared by condensation of the organic ligand pyrazolyl L 1 L 4 and copper(II) ion in situ. The pyrazolyl compounds L 1 L 4 used in this study are: L 1 is (3,5-dimethyl-pyrazol-1-ylmethyl)-(4-methyl-pyridin-2-yl)-pyrazol-1-ylmethyl-amine; L 2 is 1-{4-[(3,5-dimethyl-pyrazol-1-ylmethyl)-pyrazol-1-ylmethyl-amino]-phenyl}-ethanone; L 3 is 1-{4-[(3,5-dimethyl-pyrazol-1-ylmethyl)-[1,2,4]triazol-1-ylmethyl-amino]-phenyl}-ethanone, and L 4 is 2-[(3,5-dimethyl-pyrazol-1-ylmethyl)-[1,2,4]triazol-1-ylmethyl-amino]-6-methyl-pyrimidin-4-ol, and copper ions salts Cu(II) are (Cu(CH3COO)2, CuCl2, Cu(NO3)2 and CuSO4). In order to determine factors influencing the catecholase activity of these complexes, the effect of ligand nature, ligand concentration, nature of solvent and nature of counter anion has been studied. The best activity of catechol oxidation is given by the combination formed by one equivalent of ligand L 2 and one equivalent of Cu(CH3COO)2 in methanol solvent which is equal to 9.09 µmol L?1 min?1. The Michaelis–Menten model is applied for the best combination, to obtain the kinetic parameters, and we proposed the mechanism for oxidation reaction of catecholase.  相似文献   

12.
Some mixed ligand copper(I) complexes of general formula [Cu(L)(PPh3)3]X (X = Cl (1), ClO4 (2), BF4 (3) or PF6 (4); L = 2-(benzen-1-yl)methyleneamino-3-aminomaleonitrile) were prepared and characterized by physicochemical and spectroscopic methods. A single-crystal X-ray diffraction study of [Cu(L)(PPh3)3]CIO4 (2) revealed that the copper atom is four coordinated in a distorted tetrahedral geometry. Electrochemical studies of complexes 14 show quasireversible redox behavior corresponding to the Cu(I)/Cu(II) couple. Room temperature luminescence is observed for all four complexes. These complexes proved to be effective catalysts for the Sonogashira coupling of terminal alkynes with aryl halides at 90 °C.  相似文献   

13.
Two isomeric dibenzofuran carboxaldehydes, namely 2-methoxydibenzo[b,d]furan-1-carbaldehyde (4) and 2-methoxydibenzo[b,d]furan-3-carbaldehyde (5), were synthesized. Formylation of 2-methoxydibenzo[b,d]furan (3) with α,α-dichloromethyl methyl ether and tin(IV) chloride gave a mixture of aldehydes 4 and 5 in 95 % yield and in a 35:65 ratio. Their 1H and 13C NMR spectral signals were not sufficiently resolved in CDCl3 solution to achieve their complete assignment, but this was possible in DMSO-d 6 with the help of 2D-NMR techniques: NOESY for 1H–1H interactions and HSQC and HMQC experiments for 1H–13C correlations. These aldehydes were used in the synthesis of novel β-phenylethylamines and NBOMe derivatives, which are undergoing biological evaluation.  相似文献   

14.
The reduction of 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-bian) with an excess of europium metal in 1,2-dimethoxyethane (dme) produces a divalent europium complex with the dpp-bian dianion, [(dpp-bian)Eu(dme)2] (1). The reactions of 1 with phenyl-acetylene and camphor proceed via protonation of the diimine ligand to form the monomeric amido-amino complexes of divalent europium — [H(dpp-bian)Eu(C≡CPh)(dme)2] (2) and [H(dpp-bian)Eu(camphor)(dme)2] (3), respectively. Compounds 2 and 3 were characterized by IR spectroscopy and elemental analysis. Their molecular structures were determined by X-ray diffraction. Compounds 2 and 3 were shown to be monomeric seven-coordinate europium(ii) complexes with terminal phenylethynyl and enol ligands, respectively. According to the IR spectroscopic data, the terminal ligands in complexes 2 and 3 undergo tautomerization involving backward proton transfer from the amido-amino ligand to the substrate. The magnetic moment of compound 2 (8.03 μB) remains constant in the temperature range of 4—300 К and confirms the presence of divalent europium.  相似文献   

15.
The syntheses, structures, and solid-state emission characteristics of trans-bis(salicylaldiminato)Pt(II) complexes bearing N-aromatic functionalities are described herein. A series of Pt complexes bearing various N-phenyl (1) and N-(1-naphthyl) (2) groups on the salicylaldiminato ligands were prepared by reacting PtCl2(CH3CN)2 with the corresponding N-salicylidene aromatic amines, and the trans-coordination and crystal packing of these complexes were unequivocally established based on X-ray diffraction (XRD). Complexes with 2,6-dimethylphenyl (1c), 2,6-diisopropylphenyl (1d), 1-naphthyl (2a), and 1-(2-methylnaphthyl) (2b) groups on the N atoms exhibited intense phosphorescent emission at ambient temperature in the crystalline state, while those with phenyl (1a), 2,6-dibromophenyl (1b), and 2,6-bis(N,N-dimethylamino)phenyl (1e) functionalities were either less emissive or non-emissive under the same conditions. XRD analyses identified significant intramolecular interactions between Pt and H atoms of the N-aryl functionalities in the emissive crystals of 1c, 1d, and 2a. These interactions were evidently an important factor associated with intense emission at ambient temperature.  相似文献   

16.
The complex formation of lithium with benzo-15-crown-5 (B15C5) was investigated. The complexes LiB15C5H2OX, where X = Cl? (1), I? (2), (3), (5), and LiBF4B15C5 (4) were synthesized and studied by IR spectroscopy. Complexes 1–4 were examined by X-ray diffraction. According to IR spectroscopy data, the crown ether conformation changes upon dissolution. The interaction of the extracted complex with the solvent was identified.  相似文献   

17.
Four d 10-based complexes with chemical formulae {[Zn(L1)2(H2O)2(4,4′-Bipy)2] (I), {[Zn2(L1)4(Mi)] · 4H2O} (II), {[Zn(L1)2(Phen)] · H2O} (III) {[Cd(L1)2(Phen)] · 2H2O} (IV) (HL1 = p-hydroxy phenylacetic acid, 4,4′-Bipy = 4,4′-bipyridine, Phen = 1,10-phenanthroline, Mi = 1,4-bis(imidazol-1-yl)butane) have been synthesized and structurally characterized by single crystal X-ray diffraction (CIF files CCDC nos. 1047119 (I), 1047120 (II), 1047121 (III), 1047122 (IV)). The significant effect of assistant ligands and metal ions on assembly of I?IV has been demonstrated, which leads to the formation of distinct crystalline products. Complexes I?IV show various coordination motifs with different existing forms and coordination modes of the organic ligands. Furthermore, extend supramolecular networks are connected by secondary interactions such as hydrogen-bonding and aromatic stacking. The thermal stability and luminescent properties of the compounds were discussed in detail.  相似文献   

18.
The structure of four new palladium complexes [Pd(HL 2 )Cl 2 and Pd(L 1–3 ) 2 ] with 3-(2-pyridyl)-5-R-1,2,4-triazoles (R=H, CH3, Ph respectively HL 1 , HL 2 , HL 3 ) was proposed based on IR, NMR, UV spectroscopy and MALDI mass spectrometry data analysis. It is found that the complexation of HL 2 and HL 3 with Pd2+ ions results in a decrease of their fluorescence intensity and it is vice versa in case of HL 1 . Furthermore, the influence of the substituent (R) in the 3-(2-pirydyl)-5-R-1,2,4-triazoles on the fluorescent and protolytic properties of HL 1–3 was investigated.  相似文献   

19.
The cadmium O,O′-dethyl (I) and O,O′-di-sec-butyl phosphorodithioate (II) complexes have been synthesized and characterized in detail by 13C, 31P, and 113Cd CP/MAS NMR. X-ray crystallography shows that complex II has a binuclear molecular structure [Cd2{S2P(O-s-C4H9)2}4]. For 31P and 113Cd NMR signals, the chemical shift anisotropy δaniso and the asymmetry parameter η have been calculated. The 31P NMR signals are assigned to the terminal and bridging ligands in the complexes.  相似文献   

20.
Two copper complexes with long rigid ligands, Cu(Tta)2(L1) (I), and Cu(Tta)2(L2) (II), where L1 = (E)-3-(4-(1H-benzo[d]imidazol-1-yl)-(4-phenyl)phenyl)-1-phenylprop-2-en-1-one, L2 = (E)-3-(4-(1H-imidazol-1-yl)phenyl)-1-(4-phenyl)phenyl)prop-2-en-1-one), have been synthesized and characterized. The single-crystal X-ray analysis (CIF files CCDC nos. 1409671 (I) and 1409672 (II)) for complexes I and II demonstrates that each copper ion assumes a distorted square-pyramidal MO4N polyhedron in which four oxygen atoms come from the Tta ligands, and one nitrogen atom comes from the N-donor ligand. Both of the complexes are linked into 3D networks through weak intermolecular interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号