首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review (with (318) refs) describes progress made in the design and synthesis of morphologically different metal oxide nanoparticles made from iron, manganese, titanium, copper, zinc, zirconium, cobalt, nickel, tungsten, silver, and vanadium. It also covers respective composites and their function and application in the field of electrochemical and photoelectrochemical sensing of chemical and biochemical species. The proper incorporation of chemical functionalities into these nanomaterials warrants effective detection of target molecules including DNA hybridization and sensing of DNA or the formation of antigen/antibody complexes. Significant data are summarized in tables. The review concludes with a discussion or current challenge and future perspectives.
Graphical abstract ?
  相似文献   

2.
This review (with 85 refs.) summarizes the recent literature on the adsorption of common aromatic pollutants by using modified metal-organic frameworks (MOFs). Four kinds of aromatic pollutants are discussed, namely benzene homologues, polycyclic aromatic hydrocarbons (PAHs), organic dyes and their intermediates, and pharmaceuticals and personal care products (PPCPs). MOFs are shown to be excellent adsorbents that can be employed to both the elimination of pollutants and to their extraction and quantitation. Adsorption mechanisms and interactions between aromatic pollutants and MOFs are discussed. Finally, the actual challenges of existence and the perspective routes towards future improvements in the field are addressed.
Graphical abstract Recent advance on adsorption of common aromatic pollutants including benzene series, polycyclic aromatic hydrocarbons, organic dyes and their intermediates, pharmaceuticals and personal care products by metal-organic frameworks.
  相似文献   

3.
An efficient approach is demonstrated for preparing particles consisting of a silver core and a shell of molecularly imprinted polymer (Ag@MIP). The MIP is prepared by using bisphenol A (BPA) as the template and 4-vinylpyridine as the functional monomer. The Ag@MIP fulfills a dual function in that the silver core acts as a SERS substrate, while the MIP allows for selective recognition of BPA. The Ag@MIP is characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, thermogravimetric analysis and Raman spectroscopy. The Raman intensity of Ag@MIP is higher than that of bare silver microspheres. The detection limit for BPA is as low as 10?9 mol·L?1.
Graphical abstract Schematic illustration of the preparation of silver microspheres coated with a molecularly imprinted polymer (Ag@MIPs) for detecting bisphenol A (BPA) by surface enhanced Raman scattering (SERS).
  相似文献   

4.
This article reports on the synthesis of water dispersible carbon quantum dots (CDs) by a one-step hydrothermal method using polyamidoamine (PAMAM) and (3-aminopropyl)triethoxysilane (APTES) as a platform and passivant. The resulting CDs are highly uniform and finely dispersed. The synergistic effect between PAMAM and APTES on the surface of the CDs results in a fluorescence that is much brighter than that of CDs modified with either APTES or PAMAM only. The fluorescence of the co-modified CDs is quenched by Hg(II) ions at fairly low concentrations. Under the optimum conditions, the intensity of quenched fluorescence drops with Hg(II) concentration in the range from 0.2 nM to 10 μM, and the detection limit is 87 fM. The effect of potentially interfering cations on the fluorescence revealed a high selectivity for Hg2+. The fluorescent probe was applied to the determination of Hg(II) in (spiked) waters and milk and gave recoveries between 95.6 and 107 %, with relative standard deviation between 4.4 and 6.0 %.
Graphical abstract Strongly fluorescent carbon quantum dots (CDs) modified with polyamidoamine (PAMAM) and 3-aminopropyltriethoxysilane (APTES) were synthesized by one-step hydrothermal strategy. The resulting co-modified CD s were used as fluorescent probe for sensitive and selective detection of Hg2+.
  相似文献   

5.
A highly selective electrochemical sensor was fabricated based on a modified carbon paste electrode with zinc ferrite nanoparticles (ZnFe2O4 NPs). The nanocomposite has attractive properties such as high surface-to-volume ratio and good electrocatalytic activity towards the drugs acetaminophen (AC), epinephrine (EP), and melatonin (MT), best at working voltages of 0.35, 0.09 and 0.55 V (vs. Ag/AgCl), respectively. The linear ranges (and detection limits) are 6.5–135 (0.4) μmol L?1 for AC, 5–100 (0.7) μmol L?1 for EP, and 6.5–145 (3) μmol L?1 for MT.
Graphical abstract A novel electrochemical sensor based on a modified carbon paste electrode with zinc ferrite nanoparticles (ZnFe2O4) for the simultaneous detection of the acetaminophen, epinephrine and melatonin was fabricated
  相似文献   

6.
An electrochemical nanoaptasensor is described that is based on the use of a glassy carbon electrode (GCE) modified with electrodeposited silver nanoparticles (AgNPs). An aptamer (Apt) against trinitrotoluene (TNT) was then immobilized on the AgNPs. The addition of TNT to the modified GCE leads to decrease in peak current (typically measured at a potential of ?0.45 V vs. Ag/AgCl) of riboflavin which acts as an electrochemical probe. Even small changes in the surface (as induced by binding of Apt to TNT) alter the interfacial properties. As a result, the LOD is lowered to 33 aM, and the dynamic range extends from 0.1 fM to 10 μM without sacrificing specificity.
Graphical abstract Schematic presentation of a nanoaptasensor which is based on a glassy carbon electrode (GCE) modified with electrodeposited silver nanoparticles (AgNPs) and aptamer (Apt). It was applied to the detection of 2,4,6-trinitrotoluene (TNT) with the help of riboflavin (RF) as a redox probe.
  相似文献   

7.
The authors report that sulfide ions are capable of inhibiting the peroxidase-like activity of copper nanoclusters (CuNCs). The catalytic activity of CuNCs toward the oxidation of the chromogenic substrate 3,3′,5,5′-tetramethylbenzidine by H2O2 is remarkably decreased in the presence of sulfide. Based on this finding, a colorimetric assay was developed for the rapid determination of sulfide. Best operated at a wavelength of 652 nm, it has a 0.5 μM detection limit. The method is highly selective and has been successfully applied to the quantification of sulfide in environmental water samples.
Graphical abstract The catalytic activity of CuNCs toward the oxidation of 3,3′,5,5′-tetramethylbenzidine by H2O2 is remarkably decreased in the presence of sulfide ions. This finding has been applied to design a method for colorimetric quantification of sulfide ions in environmental samples.
  相似文献   

8.
A fluorometric ATP assay is described that makes use of carbon dots and graphene oxide along with toehold-mediated strand displacement reaction. In the absence of target, the fluorescence of carbon dots (with excitation/emission maxima at 360/447 nm) is strong and in the “on” state, because the signal probe hybridizes with the aptamer strand and cannot combine with graphene oxide. In the presence of ATP, it will bind to the aptamer and induce a strand displacement reaction. Consequently, the signal probe is released, the sensing strategy will change into the “off” state with the addition of graphene oxide. This aptasensor exhibits selective and sensitive response to ATP and has a 3.3 nM detection limit.
Graphical abstract Schematic of signal amplification by strand displacement in a carbon dot based fluorometric assay for ATP. This strategy exhibits high sensitivity and selectivity with a detection limit as low as 3.3 nM.
  相似文献   

9.
The authors report on a novel sorbent (thermally treated natural zeolite; clinoptilolite) for use in dispersive micro-solid phase extraction (D-μ-SPE) of polycyclic aromatic hydrocarbons (PAHs) from water samples. The method was applied to the D-μ-SPE of 16 priority PAHs which then were quantified by gas chromatography with mass spectrometric detection (GC-MS). The method was validated in terms of specificity and selectivity, linearity and linear range, accuracy, precision, uncertainty, limits of detection and quantification. Figures of merit include (a) linear analytical ranges between 2.08 and 208 ppb, and (b) detection limits in the range from 0.01 to 0.92 ppb. The method was successfully applied to the determination of PAHs in river waters.
Graphical abstract Schematic representation of dispersive micro-solid phase extraction (D-μ-SPE) of trace levels of PAHs in water samples by using thermally treated clinoptilolite as sorbent prior to gas chromatography-mass spectrometry analysis (GC-MS).
  相似文献   

10.
This review (with 340 refs) focuses on methods for specific and sensitive detection of metabolites for diagnostic purposes, with particular emphasis on electrochemical nanomaterial-based sensors. It also covers novel candidate metabolites as potential biomarkers for diseases such as neurodegenerative diseases, autism spectrum disorder and hepatitis. Following an introduction into the field of metabolic biomarkers, a first major section classifies electrochemical biosensors according to the bioreceptor type (enzymatic, immuno, apta and peptide based sensors). A next section covers applications of nanomaterials in electrochemical biosensing (with subsections on the classification of nanomaterials, electrochemical approaches for signal generation and amplification using nanomaterials, and on nanomaterials as tags). A next large sections treats candidate metabolic biomarkers for diagnosis of diseases (in the context with metabolomics), with subsections on biomarkers for neurodegenerative diseases, autism spectrum disorder and hepatitis. The Conclusion addresses current challenges and future perspectives.
Graphical abstract This review focuses on the recent developments in electrochemical biosensors based on the use of nanomaterials for the detection of metabolic biomarkers. It covers the critical metabolites for some diseases such as neurodegenerative diseases, autism spectrum disorder and hepatitis.
  相似文献   

11.
The authors describe an ethylene glycol assisted precipitation method for synthesis of Er(III)/Yb(III)-doped BiF3 nanoparticles (NPs) at room temperature. Under 980-nm light irradiation, the NPs emit upconversion (UC) emission of Er(III) ions as a result of a two-photon absorption process. The temperature-dependent green emissions (peaking at 525 and 545 nm) are used to establish an unambiguous relationship between the ratio of fluorescence intensities and temperature. The NPs have a maximum sensitivity of 6.5?×?10?3 K?1 at 619 K and can be applied over the 291–691 K temperature range. The results indicate that these NPs are a promising candidate for optical thermometry.
Graphical abstract Schematic of the room-temperature preparation of Er(III)/Yb(III)-doped BiF3 nanoparticles with strongly temperature-dependent upconversion emission.
  相似文献   

12.
Amorphous titania was modified with boric acid, and the resulting material was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction and X-ray photoelectron spectrometry. The new material, in contrast to conventional boronate affinity materials containing boronic acid ligands, bears boric acid groups. It is shown to exhibit high specificity for glycoproteins, and this was applied to design a method for solid phase extraction of glycoproteins as shown for ribonuclease B, horse radish peroxidase and ovalbumin. Glycoproteins were captured under slightly alkaline environment and released in acidic solutions. The glycoproteins extracted were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The binding capacities for ribonuclease B, horse radish peroxidase and ovalbumin typically are 9.3, 26.0 and 53.0 mg ? g?1, respectively. The method was successfully applied to the selective enrichment of ovalbumin from egg white.
Graphical abstract Schematic presentation of the capture of glycoproteins by amorphous titania modified with boric acid.
  相似文献   

13.
A sorbent for selective extraction of phosphoproteins was obtained by immobilization of a Ce(IV)-substituted polyoxometalate on ethylenediamine-functionalized graphene oxide (CeEGO). The resulting composites exhibit an adsorption capacity of 981 mg g?1 for β-casein due to the synergistic effect of metal-affinity interaction between Ce(IV) and phosphate groups and π-stacking interaction between the polyoxometalate framework and the phosphate groups. The results of LC-MS and SDS-PAGE analysis show that the CeEGO composites can be applied to the extraction of phosphoproteins from protein mixture, and as little as 50 μg mL?1 of the phosphoprotein β-casein can be detected by SDS-PAGE. It was also applied to the extraction of β-casein from spiked biological samples such as drinking milk, whole blood and swine heart tissue extract.
Graphical abstract An efficient sorbent is obtained by immobilization of a Ce(IV)-substituted polyoxometalate on ethylenediamine-functionalized graphene oxide (CeEGO). The resulting composites exhibit highly selective capture capacity towards phosphoproteins due to the synergistic effect of metal-affinity interaction between Ce(IV) and phosphate groups and π-stacking interaction between the polyoxometalate framework and the phosphate groups.
  相似文献   

14.
This review (with 154 refs.) describes the current status of using molecularly imprinted polymers in the extraction and quantitation of illicit drugs and additives. The review starts with an introduction into some synthesis methods (lump MIPs, spherical MIPs, surface imprinting) of MIPs using illicit drugs and additives as templates. The next section covers applications, with subsections on the detection of illegal additives in food, of doping in sports, and of illicit addictive drugs. A particular focus is directed towards current limitations and challenges, on the optimization of methods for preparation of MIPs, their applicability to aqueous samples, the leakage of template molecules, and the identification of the best balance between adsorption capacity and selectivity factor. At last, the need for convincing characterization methods, the lack of uniform parameters for defining selectivity, and the merits and demerits of MIPs prepared using nanomaterials are addressed. Strategies are suggested to solve existing problems, and future developments are discussed with respect to a more widespread use in relevant fields.
Graphical abstract This review gives a comprehensive overview of the advances made in molecularly imprinting of polymers for use in the extraction and quantitation of illicit drugs and additives. Methods for syntheses, highlighted applications, limitations and current challenges are specifically addressed.
  相似文献   

15.
Gold nanoclusters (AuNCs) protected with a bovine serum albumin (BSA) coating are known to emit red fluorescence (peaking at 650 nm) on photoexcitation with ultraviolet light (365 nm). On addition of Cu(II) ions, fluorescence is quenched because Cu(II) complexes certain amino acid units in the BSA chain. Fluorescence is, however, restored if pyrophosphate (PPi) is added because it will chelate Cu(II) and remove it from the BSA coating on the AuNCs. Because PPi is involved in the function of telomerase, the BSA@AuNCs loaded with Cu(II) can act as a fluorescent probe for determination of the activity of telomerase. A fluorescent assay was worked out for telomerase that is highly sensitive and has a wide linear range (10 nU to 10 fM per mL). The fluorescent probe was applied to the determination of telomerase activity in cervix carcinoma cells via imaging. It is shown that tumor cells can be well distinguished from normal cells by monitoring the differences in intracellular telomerase activity.
Graphical abstract Gold nanoclusters (AuNCs) protected by bovine serum albumin (BSA) and displaying red photoluminescence were prepared as fluorescent probe for the determination of telomerase activity and used for imaging of cervix carcinoma (HeLa) cells.
  相似文献   

16.
The work describes a hybrid electrochemical sensor for highly sensitive detection of the anesthetic lidocaine (LID). Porous carbon (PC) was synthesized from an isoreticular metal-organic framework-8 (IRMOF-8) and drop cast onto a glassy carbon electrode (GCE). A layer of a molecularly imprinted polymer (MIP) layer was then fabricated in situ on the modified GCE by electro-polymerization, with LID acting as the template and resorcinol as the functional monomer. Hexacyanoferrate is used as an electrochemical probe. The electrical signal (typically acquired at 0.335 V vs. SCE) increases linearly in the 0.2 pM to 8 nM LID concentration range, with a remarkable 67 fM detection limit (at an S/N ratio of 3). The sensor is stable and selective. Eventually, rapid and accurate detection of LID in spiked real samples was successfully realized.
Graphical abstract ?
  相似文献   

17.
Stable copper nanoclusters (CuNCs) were prepared by utilizing D-penicillamine as both the stabilizer and reductant. The emission of the CuNCs (with excitation/emission peaks at 390/645 nm) is largely stabilized by coating with poly(sodium-p-styrenesulfonate) (PSS). Cytochrome c (Cyt c) quenches the fluorescence of the PSS-coated CuNCs, and this effect was exploited to design a quenchometric fluorometric assay for Cyt c. If trypsin is added to the loaded CuNCs, it will hydrolyze Cyt c to form peptide fragments, and fluorescence is gradually restored. A highly sensitive and fluorometric turn-off-on assay was constructed for sequential detection of Cyt c and trypsin. The linear ranges for Cyt c and trypsin are from 8.0 nM to 680 nM, and from 0.1 to 6.0 μg mL?1, and the lower detection limits are 0.83 nM and 20 ng mL?1 for Cyt c and trypsin, respectively.
Graphical abstract Schematic illustration of the fluorometric assay for trypsin based on the electron transfer between poly(p-styrenesulfonate)-protected copper nanoclusters (PSS-CuNCs) and cytochrome c (Cyt c).
  相似文献   

18.
The authors describe an electrochemical method for the determination of the single-stranded DNA (ssDNA) oligonucleotide with a sequence derived from the genom of hepatitis B virus (HBV). It is making use of circular strand displacement (CSD) and rolling circle amplification (RCA) strategies mediated by a molecular beacon (MB). This ssDNA hybridizes with the loop portion of the MB immobilized on the surface of a gold electrode, while primer DNA also hybridizes with the rest of partial DNA sequences of MB. This triggers the MB-mediated CSD. The RCA is then initiated to produce a long DNA strand with multiple tandem-repeat sequences, and this results in a significant increase of the differential pulse voltammetric response of the electrochemical probe Methylene Blue at a rather low working potential of ?0.24 V (vs. Ag/AgCl). Under optimal experimental conditions, the assay displays an ultrahigh sensitivity (with a 2.6 aM detection limit) and excellent selectivity. Response is linear in the 10 to 700 aM DNA concentration range.
Graphical abstract Schematic of a voltammetric method for the determination of attomolar levels of target DNA. It is based on molecular beacon mediated circular strand displacement and rolling circle amplification strategies. Under optimal experimental conditions, the assay displays an ultrahigh sensitivity with a 2.6 aM detection limit and excellent selectivity.
  相似文献   

19.
Hydroxyapatite nanoparticles (HAP-NPs) were rendered fluorescence by doping with Eu(III) ion. The resulting fluorescent NPs are shown to be viable probes for sensitive and selective determination of dipicolinic acid (DPA), a major constituent of bacterial spores as used in bioterrorism. It is found that the addition of DPA to solutions of such HAP-NPs result in an enhancement of fluorescence due to the coordination of DPA with the Eu(III) dopant. The assay allows DPA to be detected in the 0.1 to 40 μM concentration range and with a 77 nM detection limit. The assay was applied to the detection of spores of Bacillus subtilis. The attractive properties of the probe make it a promising candidate for used in rapid detection of pathogenic bacterial spores.
Graphical abstract Fluorescent hydroxyapatite nanoparticles (HAP-NPs) are shown to be a viable probe for detection of dipicolinic acid, a major constituent of bacterial spores. The red asterisks represent the fluorescence intensity of the HAP-NPs.
  相似文献   

20.
A three-dimensional magnetic hollow porous raspberry-like hierarchical Co/Ni@carbon microspheres (3D Co/Ni@carbon) were synthesized by using a bimetal-organic framework (Co/Ni-MOF) as a precursor and subsequent calcination under nitrogen. The 3D Co/Ni@carbon is a novel solid phase extractant that displays outstanding extraction capability and separation efficiency for the pyrethroid pesticides ethofenprox and bifenthrin. This is ascribed to the beneficial effects of facile analyte transport (due to the presence of free pores), the abundant number of adsorption sites (which warrant efficient extraction), and the excellent structural stability of the material. The 3D Co/Ni@carbon was applied to dispersive magnetic solid-phase extraction (d-MSPE), and the two pyrethroids were quantified by HPLC (UV detection wavelength: 220 nm). The method has a high preconcentration factor (937–1012) and give recoveries that range between 85.6–106.9%, with RSDs (for n?=?5) of <6% in case of real samples.
Graphical abstract The hierarchical porous Co/Ni@carbon microsphere as adsorbent was fabricated, and it showed high extraction efficiency for two pyrethroids.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号