首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rise in environmental issues due to the catalytic degradation of pollutants in water has received much attention. In this report, a facile method was developed for the generation of a novel thermosensitive Ag-decorated catalyst, SiO2@PNIPAM@Ag (the average particle size is around 540 nm), through atom transfer radical polymerization (ATRP) and mild reducing reactions. First, poly(N-isopropylacrylamide) (PNIPAM) was used to create a shell around mercapto-silica spheres that allowed for enhanced catalyst support dispersion into water. Second, through a mild reducing reaction, these Ag nanoparticles (NPs) were then anchored to the surface of SiO2@PNIPAM spheres. The resulting catalyst revealed catalytic activity to degrade various nitrobenzenes and organic dyes in an aqueous solution with sodium borohydride (NaBH4) at ambient temperature. The catalytic activity can be adjusted in different temperatures through the aggregation or dispersion of Ag catalyst on the polymer supporters, which is due to the thermosensitive PNIPAM shell. The ease of preparation and efficient catalytic activity of the catalyst can make it a promising candidate for the use in degrading organic pollutants for environmental remediation.
Graphical abstract ?
  相似文献   

2.
The effect of interaction of low-index atomic planes, (100), (110), and (111) terminating CdSe platelet nanocrystals is examined using molecular dynamics (MD) simulations. Asymmetry of the environment of atoms at the end surface layers leads to anisotropic deformation of the cubic lattice and to a relative shift of Cd and Se sub-lattices. Interference of distortions of the crystal lattice originating at the terminal surfaces leads to changes of symmetry of the CdSe lattice in the whole sample volume. In the models, 2–3 nm thick, for all types of surfaces under examination, the initial cubic lattice symmetry gets lost in the whole sample volume.
Graphical abstract ?
  相似文献   

3.
In this study, two different synthetic methods in aqueous solution are presented to tune the optical properties of CdTe and CdSe semiconductor nanoparticles. Additionally, the influence of different temperatures, pressures, precursor ratios, surface ligands, bases, and core components in the synthesis was investigated with regard to the particle sizes and optical properties. As a result, a red shift of the emission and absorption maxima with increasing reaction temperature (100 to 220°C), pressure (1 to 25 bar), and different ratios of core components of alloyed semiconductor nanoparticles could be observed without a change of the particle size. An increase in particle size from 2.5 to 5 nm was only achieved by variation of the mercaptocarboxylic acid ligands in combination with the reaction time and used base. To get a first hint on the cytotoxic effects and cell uptake of the synthesized quantum dots, in vitro tests mesenchymal stem cells (MSCs) were carried out.
Graphical abstract
  相似文献   

4.
Despite advancements in treatment of infectious diseases, opportunistic pathogens continue to pose a worldwide threat. Identifying a source of infection/inflammation is often challenging which highlights the need of improved diagnostic agents. Using a model of local S. aureus infection, here we evaluated the potential of betamethasone or dexamethasone loaded in poly (lactic acid) nanoparticles and radiolabeled with 99mTc to detect an infection/inflammation site in vivo. A betamethasone and dexamethasone nanoparticles (NPs) with 200 and 220 nm in size, respectively, were created with a 98% 99mTc radiolabeling efficiency. When injected in infected mice, betamethasone NPs presented a higher accumulation in the infected hind paw in comparison with dexamethasone NPs. Our results suggest that this nanosystem may be a valid nanoradiopharmaceutical for the detection of inflammation/infection foci in vivo.
Graphical abstract Nanoradiopharmaceutical for inflammation
  相似文献   

5.
The results of molecular dynamics (MD) simulations of CdSe crystals terminated by low-index atomic planes, (100), (110) and (111), are presented. The effect of the crystal termination on the atomic arrangement (interatomic distances) at the surface and underneath the surface is examined. It is shown that the crystal lattice is distorted in lateral and normal directions to the depth of up to about 2 nm from the surface. The exact characteristic of the changes of interatomic distances is specific to the type of the atomic plane terminating the crystal lattice. At some surfaces, the very last monoatomic layer loses the long-range ordering and becomes quasi amorphous. The atoms group into randomly distributed pairs or short linear groups.
Graphical abstract
  相似文献   

6.
This work uses linear and looped RGDfV sequences attached to the surface of small (1.8 nm in diameter) gold nanoparticles (AuNPs) to enhance the radiosensitizating effects of Cilengitide, a cyclic RGDf (NMe)V pentapeptide that targets αvβ3 integrin which is overexpressed in certain cancers. Following synthesis and purification, the AuNPs were evaluated in vitro against HUVEC, H460, and MCF7 cells in clonogenic assays using a 137Cs irradiator. Untargeted AuNPs induced no significant dose enhancement factors (DEFs) in any of the cell types when compared to radiation treatment alone, whereas all evaluated AuNPs functionalized with targeting peptides performed at least as well as controls (irradiation after Cilengitide treatment). The observed DEFs also suggest that cyclizing the linear peptides into more spatially constrained, looped structures may facilitate target binding. These greater dose enhancements merit future in vivo studies of drug-AuNP conjugates to assess the ability of the nanostructures to provide an improved therapeutic benefit over treatment with drug candidates and radiation alone.
Graphical abstract ?
  相似文献   

7.
In this paper, we report synthesis and study of magneto-optic Faraday effect for dilute magnetic semiconductor nanostructure. The colloidal CdS nanocrystals were prepared via hot injection method and successfully doped with Mn2+ cations. The synthesized nanoparticles were characterized by using UV–Vis spectroscopy, X-ray diffraction, photoluminescence spectroscopy, transmission electron microscopy, and electron spin resonance spectroscopy. Systematic studies on effect of Mn2+ doping on photoluminescence, electron spin resonance, and magneto-optical properties are carried out. UV–Vis spectral analysis confirms blue shift in bandgap of CdS nanoparticles due to quantum confinement effect. The X-ray diffraction study confirms hexagonal wurtzite phase formation of CdS nanoparticles without any impurity phases. TEM analysis confirms uniform particle size, having particle size distribution around 5 nm. As-synthesized undoped CdS shows triangular-shaped nanocrystals with hexagonal structure; however, triangular shape of CdS nanoparticles is not conserved after Mn2+ doping. The photoluminescence characteristic spectra of Mn2+-doped CdS nanocrystals showed emission band at 660 nm and its intensity was found to increase with increasing Mn2+ concentration. Electron spin resonance signal, with six-line hyperfine structure splitting, confirmed doping of Mn2+ ions in CdS lattice. Magneto-optic measurements showed linear variation of Faraday rotation with respect to applied magnetic field, indicating paramagnetic behavior of Mn-doped CdS. The highest Verdet constant 24.81 deg/T cm was observed for 2% Mn-doped CdS nanocrystals, which further decreases with increasing Mn2+ concentration.
Graphical abstract Illustration of Magneto-optic Faraday effect using dilute magnetic semiconductors (TEM image of triangular CdS nanoparticles)
  相似文献   

8.
Single-walled carbon nanotubes (SWNTs) are 1D nanostructures with distinct physical and chemical properties that have shown great promise for applications in many fields, including biomedicine. Since for biomedical application the water solubility is crucial and SWNTs have low solubility, various methods (including polymer and biopolymer wrapping, chemical modifications) have been developed to solubilize and disperse them in water. Due to their unique optical properties such as photoluminescence in the NIR and strong resonant Raman signatures, they can be used as nanoprobes in biomedical imaging and phototherapies. Furthermore, decoration of SWNTs with noble metal nanoparticles will induce an excellent surface-enhanced Raman scattering (SERS) effect of the nanoparticles-SWNTs composites, with applications in cell imaging. Herein, we present a new and facile strategy for the DNA-assisted decoration of SWNTs with gold nanoparticles (AuNPs) and their application in SERS imaging. By ultrasonication at room temperature of SWNTs with AuNPs functionalized with synthetic DNA, SWNT-AuNPs nanocomposites with enhanced Raman signal were obtained. Among the important advantages of the proposed method are the presence of the free DNA overhangs around the SWNT-AuNPs suitable for post-synthetic modification of nanocomposite through hybridization of complementary DNA strands containing molecules of interest attached by well-developed bio-conjugation chemistry.
Graphical abstract ?
  相似文献   

9.
Carbon-coated ZnFe2O4 spheres with sizes of ~110–180 nm anchored on graphene nanosheets (ZF@C/G) are successfully prepared and applied as anode materials for lithium ion batteries (LIBs). The obtained ZF@C/G presents an initial discharge capacity of 1235 mAh g?1 and maintains a reversible capacity of 775 mAh g?1 after 150 cycles at a current density of 500 mA g?1. After being tested at 2 A g?1 for 700 cycles, the capacity still retains 617 mAh g?1. The enhanced electrochemical performances can be attributed to the synergetic role of graphene and uniform carbon coating (~3–6 nm), which can inhibit the volume expansion, prevent the pulverization/aggregation upon prolonged cycling, and facilitate the electron transfer between carbon-coated ZnFe2O4 spheres. The electrochemical results suggest that the synthesized ZF@C/G nanostructures are promising electrode materials for high-performance lithium ion batteries.
Graphical abstract ?
  相似文献   

10.
A novel core–shell nanocomposite Ni–Ca@mSiO2 was first prepared by a modified Stöber method in this paper. It has a core–shell structure with Ni (about 8 nm in diameter) and Ca as the cores and mesoporous silica as the outer shell, as proven by the transmission electron microscopy. This nanocomposite exhibited good catalytic performance in the selective hydrogenation of benzophenone, with 96.1% conversion and 94.9% selectivity for benzhydrol under relatively mild reaction conditions. It was demonstrated that addition of small amounts of alkaline Ca can not only markedly improve the dispersion of the active species but also tune the acid–base property of this nanocomposite, resulting in the efficient suppression of benzhydrol dehydration to achieve a high selectivity. Furthermore, the core–shell nanocomposite Ni–Ca@mSiO2 can be recycled four runs without appreciable loss of its initial activity, more stable than the traditional supported nanocatalyst Ni–Ca/mSiO2. It was suggested that the outer mesoporous silica shell of Ni–Ca@mSiO2 can prevent both the aggregation and the leaching of the active Ni species, accounting for its relatively good stability.
Graphical abstract A magnetic core–shell nanocomposite Ni–Ca@mSiO2 exhibited good activity, selectivity, and reusability in benzophenone selective hydrogenation.
  相似文献   

11.
BaWO4 nanoparticles were successfully used as the photocatalysts in the degradation of methylthioninium chloride (MTC) dye at different pH levels of aqueous solution. Pure phase of barium tungstate (BaWO4) nanoparticles was synthesized by modified molten salt process at 500 °C for 6 h. Structural and morphological characterizations of BaWO4 nanoparticles (average particle size of ~40 nm) were studied in details using powder x-ray diffraction (XRD), FTIR, Raman, energy-dispersive, electron microscopic, and x-ray photoelectron spectroscopy (XPS) techniques. Direct band gap energy of BaWO4 nanoparticles was found to be ~3.06 eV from the UV–visible absorption spectroscopy followed by Tauc’s model. Photocatalytic properties of the nanoparticles were also investigated systematically for the degradation of MTC dye solution in various mediums. BaWO4 nanoparticles claim the significant enhancement of the photocatalytic degradation of aqueous MTC dye to non-hazardous inorganic constitutes under alkaline, neutral, and acidic mediums.
Graphical abstract BaWO4 nanoparticles enhance the rate of photocatalytic degradation of organic dyes in various mediums.
  相似文献   

12.
Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors.
Graphical abstract Determination of hydrophobicity character of nanomaterials by measuring their affinity to engineered surfaces.
  相似文献   

13.
Dendritic Pt–Cu nanoparticles were synthesized by a facile one-step method with the help of surfactant Brij58 at room temperature, and we also studied the effects of different Pt–Cu ratios on the morphology and size of nanoparticles. In addition, we further tuned the morphology of the Pt–Cu nanostructures by introducing bromide ions, eventually leading to the appearance of some tripod-like structures. Compared with dendritic Pt–Cu and commercial Pt black, these tripod-like Pt–Cu nanostructures exhibited higher electrocatalytic activity and CO tolerance for catalyzing methanol oxidation.
Graphical abstract ?
  相似文献   

14.
This paper reported a one-step synthesis of Ag2S/Ag@MoS2 nanocomposites and its applications in the surface-enhanced Raman scattering (SERS) detection and photocatalytic degradation of organic pollutants. The nanocomposites were well characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), cyclic voltammograms (CV), the Brunauer-Emmett-Teller (BET), and Fourier transforms infrared spectra (FTIR). The AgNPs were uniformly dispersed on the MoS2 nanosheets and the particle size of the AgNPs was about 10–30 nm. These Ag2S/Ag@MoS2 nanocomposites offered sensitive SERS signals for the detection of R6G with the limit of detections as low as 10?10 M. The photocatalytic activity of the composite catalyst was studied by the degradation of methylene blue (MB) dye under light illumination. The apparent rate constant of MB degradation for the obtained catalyst could reach 6.6?×?10?2 min?1, indicating that the novel Ag2S/Ag@MoS2 nanocomposites can be explored for organic pollutant’s detection and degradation.
Graphical abstract One-step synthesis of Ag2S/Ag@MoS2 nanocomposites for SERS and photocatalytic applications
  相似文献   

15.
Carbon materials have attracted great attention in CO2 capture and energy storage due to their excellent characteristics such as tunable pore structure, modulated surface properties and superior bulk conductivities, etc. Biomass, provided by nature with non-toxic, widespread, abundant, and sustainable advantages, is considered to be a very promising precursor of carbons for the view of economic, environmental, and societal issues. However, the preparation of high-performance biomass-derived carbons is still a big challenge because of the multistep process for their synthesis and subsequent activation. Herein, hierarchically porous structured carbon materials have been prepared by directly carbonizing dried cauliflowers without any addition of agents and activation process, featuring with large specific surface area, hierarchically porous structure and improved pore volume, as well as suitable nitrogen content. Being used as a solid-state CO2 adsorbent, the obtained product exhibited a high CO2 adsorption capacity of 3.1 mmol g?1 under 1 bar and 25 °C and a remarkable reusability of 96.7% retention after 20 adsorption/regeneration cycles. Our study reveals that choosing a good biomass source was significant as the unique structure of precursor endows the carbonized product with abundant pores without the need of any post-treatment. Used as an electrode material in electrochemical capacitor, the non-activated porous carbon displayed a fairly high specific capacitance of 228.9 F g?1 at 0.5 A g?1 and an outstanding stability of 99.2% retention after 5000 cycles at 5 A g?1.
Graphical abstract Hierarchically porous structured carbon materials are prepared by directly carbonizing dried cauliflower without any agents and process of activation for high performance of CO2 capture and capacitor.
  相似文献   

16.
Porous polyacrylamide hydrogel (PAM) was prepared by polymerization at room temperature. Cadmium sulfide/polyacrylamide hydrogels (CdS/PAM) was synthesized by in situ loading CdS nanoparticles and used for photocatalytic decomposition of water for the first time. The size distribution of the loaded CdS nanoparticles is 3–12 nm. We studied the enhanced photocatalytic activity and photo-corrosion inhibition of CdS/PAM the compared with pure CdS and probed the mechanism of the improvement. In particular, the CdS/PAM prepared in 0.003 M CdCl2 solution exhibited the highest hydrogen production efficiency of 2.929 mmol g?1 h?1, about 79 times that of pure CdS. The results demonstrate that the formation of new N–Cd bond and high transmittance of CdS/PAM dramatically enhance photocatalytic activity. The electron cloud of nitrogen atom can attract holes and repel photogenerated electrons, which lowers the carrier recombination probability. The results also reveal that the excellent hydrophilicity of hydrogel plays an important role in the inhibition of photocorrosion. In addition, CdS/PAM is easily recycled and processed. The present work will pave a good way for the application of smart hydrogels in the field of photocatalytic hydrogen production.
Graphical abstract ?
  相似文献   

17.
Magnetic nanoparticles (MNPs) which exhibit magnetic and catalytic bifunctionalities have been widely accepted as one of the most promising nanoagents used in water purification processes. However, due to the magnetic dipole-dipole interaction, MNPs can easily lose their colloidal stability and tend to agglomerate. Thus, it is necessary to enhance their colloidal stability in order to maintain the desired high specific surface area. Meanwhile, in order to successfully utilize MNPs for environmental engineering applications, an effective magnetic separation technology has to be developed. This step is to ensure the MNPs that have been used for pollutant removal can be fully reharvested back. Unfortunately, it was recently highlighted that there exists a conflicting role between colloidal stability and magnetic separability of the MNPs, whereby the more colloidally stable the particle is, the harder for it to be magnetically separated. In other words, attaining a win-win scenario in which the MNPs possess both good colloidal stability and fast magnetic separation rate becomes challenging. Such phenomenon has to be thoroughly understood as the colloidal stability and the magnetic separability of MNPs play a pivotal role on affecting their effective implementation in water purification processes. Accordingly, it is the aim of this paper to provide reviews on (i) the colloidal stability and (ii) the magnetic separation of MNPs, as well as to provide insights on (iii) their conflicting relationship based on recent research findings.
Graphical abstract Interrelationship of agglomeration, colloidal stability, and magnetic separability of nanoparticles
  相似文献   

18.
In this paper, the green synthesis of fluorescent carbon dots (CDs) via one-step hydrothermal treatment of cornstalk was investigated. This approach is facile, economical, and effective. The obtained CDs with an average diameter of 5.2 nm possess many excellent properties such as emitting blue fluorescence under UV light (365 nm), high monodispersity, good stability, excellent water dispersibility, and absolute quantum yield of 7.6%. Then, these CDs were used as sensing probes for the detection of Fe2+ and H2O2 with detection limits as low as 0.18 and 0.21 μM, respectively. This sensing platform shows advantages such as high selectivity, good precision, rapid operation, and avoiding the precipitation of iron oxyhydroxides.
Graphical abstract ?
  相似文献   

19.
Porous carbon monoliths have attracted great interest in many fields due to their easy availability, large specific surface area, desirable electronic conductivity, and tunable pore structure. In this work, hierarchical porous nitrogen-doped partial graphitized carbon monoliths (N–MC–Fe) with ordered mesoporous have been successfully synthesized by using resorcinol-formaldehyde as precursors, iron salts as catalyst, and mixed triblock copolymers as templates via a one-step hydrothermal method. In the reactant system, hexamethylenetetramine (HMT) is used as nitrogen source and one of the carbon precursors under hydrothermal conditions instead of using toxic formaldehyde. The N–MC–Fe show hierarchically porous structures, with interconnected macroporous and ordered hexagonally arranged mesoporous. Nitrogen element is in situ doped into carbon through decomposition of HMT. Iron catalyst is helpful to improve the graphitization degree and pore volume of N–MC–Fe. The synthesis strategy is user-friendly, cost-effective, and can be easily scaled up for production. As supercapacitors, the N–MC–Fe show good capacity with high specific capacitance and good electrochemical stability.
Graphical abstract Hierarchical porous nitrogen-doped partial graphitized carbon monoliths with ordered mesoporous have been successfully synthesized by using resorcinol-formaldehyde as precursors, iron as catalyst, and mixed triblock copolymers as templates via a one-step hydrothermal method.
  相似文献   

20.
Nitrilimine cycloadditions to ethylenes, acetylenes, and activated nitriles have been exploited in the presence of catalytic amounts of oleic-acid-coated iron oxide nanoparticles (diameter?=?11.9?±?1.0 nm). The reactions were fully regioselective with monosubstituted ethylenes and ethyl cyanoformiate, while mixtures of cycloadducts were obtained in the presence of methyl propiolate. The intervention of iron oxide nanoparticles allowed carrying out the cycloadditions at milder conditions compared to the metal-free thermal processes. A labile intermediate has been proposed to explain this behavior.
Graphical abstract Nitrilimine cycloadditions to ethylenes, acetylenes, and activated nitriles have been exploited in the presence of catalytic amounts of oleic-acid-coated iron oxide nanoparticles.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号