首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the effect of γ-radiation from 60Co on the rate of post-irradiation laser ablation of polyvinylidene fluoride (PVDF). The laser ablation of both the initial and γ-irradiated polymer occurs without an incubation period and does not require time to heat up the polymer target by the laser within the time scale of our measurements. The second feature of the laser ablation of PVDF is an extreme dependence of the ablation rate on the dose of γ-radiation over a wide range (10 kGy – 3.5 MGy) and the appearance of a minimum ablation rate of 0.1 mg/s at a dose 300 kGy. A gradual increase in the dose of γ-irradiation above 300 kGy is accompanied by a rise in the laser ablation rate. At γ-irradiation doses up to 2.3 MGy, the rate of the post-irradiated laser ablation of PVDF reaches 6.5 mg/s, which is equal to the laser ablation rate of non-irradiated PVDF.  相似文献   

2.
3.
Radiation-stimulated adsorption on a beryllium surface is studied by IR reflection–absorption spectroscopy. It is found that γ-irradiation at room temperature leads to the appearance of n-hexane adsorption centers on a beryllium surface according to molecular and dissociation mechanisms. The kinetics of n-hexane adsorption in a Ве–n-hexane system is studied; activated dissociative chemisorption accompanied by formation of beryllium alkyls and surface hydrides is observed at absorbed doses 15 kGy ≤ Фγ ≤ 35 kGy. A possible mechanism of this process is suggested.  相似文献   

4.
We report on the mid-infrared (MIR) and terahertz (THz) wave spectra of D2O gas pumped using a fundamental transverse mode transversely excited atmospheric CO2 laser with an emission wavelength of 9.26 μm. We obtain MIR emission lines at center wavelengths of 9.262, 9.491, and 9.752 μm, which correspond to the vibrational-energy-level-transition lines of D2O. We observe an intense THz stimulated Raman emission line of 385 μm and a weak cascade-transition line of 359 μm for transitions from rotational levels 422 to 413 and 413 to 404 in the first-excited vibration state of the D2O molecule gas. We establish a four-energy-level system for modeling the laser kinetics of the dual-wavelength (385 and 359 μm) superradiation THz laser. For the optically pumped D2O gas 385 μm THz laser, in considering the cavity effect and insertion loss of a THz cavity oscillator, an approximation treatment of the THz laser kinetics can be made based on a three-energy-level system.  相似文献   

5.
The radiation-chemical decomposition of n-hexane in a Be–n-hexane system under the effect of γ-irradiation at room temperature is studied by infrared reflection–absorption spectroscopy. In the absorbed dose range 5 kGy ≤ Фγ ≤ 50 kGy, intermediate surface products of radiation-heterogeneous decomposition of n-hexane (beryllium alkyls, π-olefin complexes, and beryllium hydrides) are detected. It is shown that complete radiolysis occurs at Фγ = 30 kGy; below this dose, decomposition of n-hexane occurs only partially, while higher doses lead to steady-state saturation. The radiation-chemical yield of the final decomposition product—molecular hydrogen—is determined to be G ads(H2) = 24.8 molecules/100 eV. A possible mechanism of this process is discussed.  相似文献   

6.
The lattice parameters of ceramic samples of (1 ? x)SrTiO3-xPbTiO3 solid solutions are measured at room temperature. It is found that the samples have cubic symmetry in the concentration range x = 0?0.3 and tetragonal symmetry for x > 0.3. The lattice parameter a is virtually independent of temperature for x < 0.8 and slightly decreases in the range x = 0.8?1.0, while the lattice parameter c increases with increasing x. The reduced cubic parameter varies nonlinearly and deviates from Vegard’s linear law as the concentration x increases.  相似文献   

7.
The ability of a femtosecond laser pulse to manipulate and reverse the magnetization in a ferrimagnetic Gd24Fe66.5Co9.5 thin film was studied experimentally as a function of temperature. For a fixed energy of the laser pulse, the dynamics of magnetization showed different behavior depending on whether the sample temperature was below or above the magnetization compensation point (T M ). The conditions for full ultrafast demagnetization and magnetization reversal were easily achieved below T M , while the same laser excitation caused just 50% demagnetization above T M . This interesting change in magnetization dynamics is qualitatively explained in terms of effective changes in the magnitudes of magnetizations of atomic sublattices.  相似文献   

8.
The low-temperature specific heat C p of La(Fe0.873Co0.007Al0.12)13 compound has been measured in two states: (i) antiferromagnetic (AFM) with a Néel temperature of T N = 192 K and (ii) ferromagnetic (FM). The FM order appears at T = 4.2 K in a sample exposed to an external magnetic field with induction B C ≥ 2.5 T and is retained for a long time in a zero field at temperatures up to T*C = 23 K. The coefficient γFM in the low-temperature specific heat C = γT + βT 3 in the FM state differs quite insignificantly from that (γAFM) in the AFM state. Contributions to the low-temperature specific heat, which are related to a change in the elastic and magnetoelastic energy caused by magnetostrictive deformations, are considered.  相似文献   

9.
A comparative study of the low-temperature specific heat for two types of YBa2Cu3O y high-T c superconductor samples is performed within the temperature range of 2?10 K. The samples of the first type are fine-crystalline optimally doped ones with different degrees of nanoscale structural inhomogeneity. The second type includes coarse-crystalline equilibrium samples with different hole doping levels. A similarity in the behavior of different contributions to the specific heat for structurally inhomogeneous and underdoped samples is revealed. The samples of both types exhibit a metal-like contribution linear in temperature to the specific heat ~γT, which is not characteristic of the superconducting phase. It is found that this contribution moderately grows with the decrease in the oxygen content, whereas with the increase in the structural inhomogeneity, such growth of the linear contribution (γT) becomes anomalously large. This leads to the conclusion about the coexistence of metallic and superconducting states in the bulk of the samples under study. Such common feature of electron systems could be related to the formation of the pseudogap regime. It is demonstrated that this regime suppresses just the superconducting states, leaving intact the metallic ones.  相似文献   

10.
The unit cell parameters a, b, and c of [N(CH3)4]2ZnCl4 have been measured by x-ray diffraction in the temperature range 80–293 K. Temperature dependences of the thermal expansion coefficients αa, αb, and αc along the principal crystallographic axes and of the unit cell thermal expansion coefficient αV were determined. It is shown that the a=f(T), b=f(T), and c=f(T) curves exhibit anomalies in the form of jumps at phase transition temperatures T1=161 K and T2=181 K and that the phase transition occurring at T3=276 K manifests itself in the a=f(T) and b=f(T) curves as a break. A slight anisotropy in the coefficient of thermal expansion of the crystal was revealed. The phase transitions occurring at T1=161 K and T2=181 K in [N(CH3)4]2ZnCl4 were established to be first-order.  相似文献   

11.
The temperature dependence of the residual polarization of the nonergodic relaxation state (NERS) obtained from the measurements of pyroelectric current during zero-field heating (ZFH) in the temperature interval from 10 to 295 K is investigated for the Cd2Nb2O7 relaxation system in two cases: (1) after sample cooling in a constant electric field E (FC) from T = 295 K to a preset temperature, which is much lower than the “freezing” temperature of the relaxation state (T f ≈ 182 K), field removal, and subsequent cooling in zero field (ZFC) to T = 10 K and (2) after ZFC from T = 295 K to the same temperature below T f , application of the same field, and FC to T = 10 K. The behavior of the P r FC (T) and P r ZFC (T) dependences is analyzed. In the field E < 2 kV/cm, the P r ZFC curves as functions of 1/T have a broad low-intensity peak in the region TT f , which vanishes in stronger fields, when the P r FC (1/T) curves intersect at TT f and have no anomalies. The difference in the behavior of P r ZFC (T) and P r FC (T) indicates the difference in the nature of NERS formed during ZFC and FC of the system upon a transition through T f . In the ZFC mode, NERS exhibits glasslike behavior; in the FC regime, features of the ferroelectric behavior even in the weak field. Analogous variations of P r ZFC (T) and P r FC (T) in a classical ferroelectric KDP are also given for comparison.  相似文献   

12.
The curves of intracenter luminescence decay for Mn2+ ions in the Cd0.5Mn0.5Te semiconductor solid solution, obtained in a low-temperature experiment, have been simulated by the Monte Carlo method. The features of the kinetics of the 2-eV band in the time interval where significant nonexponentiality of relaxation at different points of the emission band profile manifests itself, as well the integral kinetics and energy relaxation, have been considered. Migration of ion excitations and concentration quenching (which was previously disregarded) are considered to be the main mechanisms determining the kinetic curve formation. It was established that excitation by 2.34-eV photons leads to both selective (intracenter) and band excitation of Mn2+ ions. Comparison of the results of numerical simulation and experiment showed that the characteristic values of the migration and quenching rates (W m and W q , respectively) are close in magnitude and W q, m ≈ 0.1/τ, where τ is the lifetime at the long-wavelength band wing with the exponential kinetics. The estimated quantum yield (0.56) indicates significant influence of the concentration quenching on the 2-eV luminescence quantum yield in Cd1 ? x Mn x Te and Zn1 ? x Mn x S crystals with a high concentration of Mn2+ ions.  相似文献   

13.
The results of a partial-wave analysis of the angular distributions for the process γpηp over the energy range up to 2 GeV are presented. Reliable estimates of the Breit-Wigner parameters of the S11(1535) resonance, as well as the energy dependence of the real and imaginary parts of the electric dipole amplitude E0+ and its phase, are derived from the energy dependence of the regression coefficient a0(W).  相似文献   

14.
The crystal structure and magnetic properties of the Bi1 ? x Ca x Fe1 ? x/2Nb x/2O3 system were studied. It is shown that, at x ≤ 0.15, the unit-cell symmetry of solid solutions is rhombohedral (space group R3c). Solid solutions with x ≥ 0.3 have an orthorhombic unit cell (space group Pbnm). The rhombohedral compositions are antiferromagnetic, while the orthorhombic compositions exhibit a small spontaneous magnetization due to Dzyaloshinski?-Moriya interaction. In CaFe0.5Nb0.5O3, the Fe3+ and Nb5+ ions are partially ordered and the unit cell is monoclinic (space group P21/n). In the concentration range 0.15 < x < 0.30, a two-phase state (R3c + Pbnm) is revealed.  相似文献   

15.
The main properties and the type of the field-tuned quantum critical point in the heavy-fermion metal CeCoIn5 that arise upon application of magnetic fields B are considered within a scenario based on fermion condensation quantum phase transition. We analyze the behavior of the effective mass, resistivity, specific heat, charge, and heat transport as functions of applied magnetic fields B and show that, in the Landau Fermi liquid regime, these quantities demonstrate critical behavior, which is scaled by the critical behavior of the effective mass. We show that, in the high-field non-Fermi liquid regime, the effective mass exhibits very specific behavior, M*~ T? 2/3, and the resistivity demonstrates T2/3 dependence. Finally, at elevated temperatures, it changes to M*~T?1/2, while the resistivity becomes linear in T. In zero magnetic field, the effective mass is controlled by temperature T and the resistivity is also linear in T. The obtained results are in good agreement with recent experimental facts.  相似文献   

16.
We report on the synthesis and measurements of the temperature dependences of the resistivity ρ, the penetration depth λ, and the upper critical magnetic field Hc2, for polycrystalline samples of dodecaboride ZrB12 and diboride MgB2. We conclude that ZrB12 behaves as a simple metal in the normal state with the usual Bloch-Grüneisen temperature dependence of ρ(T) and with a rather low resistive Debye temperature TR = 280 K (to be compared to TR = 900 K for MgB2). The ρ(T) and λ(T) dependences for these samples reveal a superconducting transition in ZrB12 at Tc = 6.0 K. Although a clear exponential λ(T) dependence in MgB2 thin films and ceramic pellets was observed at low temperatures, this dependence was almost linear for ZrB12 below Tc/2. These features indicate an s-wave pairing state in MgB2, whereas a d-wave pairing state is possible in ZrB12. In disagreement with conventional theories, we found a linear temperature dependence, of Hc2(T) for ZrB12 (Hc2(0) = 0.15 T).  相似文献   

17.
On an example of the D2-line of the Rb atoms the work of the frequency reference of atomic transitions is demonstrated, based on the application of the spectrum of a selective reflectance (SR) from the boundary of atom vapors with the use of nano-cell (NC) with the thickness L ~ λ/2, where λ is the laser wavelength equal to 780 nm. When changing the thickness of the nano-cell near the thickness L ~ λ/2, we observe the inversion of sign of the SR slope profile which is positive when L < λ/2 and negative when L > λ/2. In the case when the incidence angle of the laser beam on the surface of the nano-cell is close to the normal, in real-time it is possible to form the derivative of the SR which represents a resonance peak with ~35 MHz spectral linewidth and located at the atomic transition. The phenomenon of oscillation of the sign of slope while changing the nano-cell thickness from L ~ λ/2 up to L ~ 3/2λ is demonstrated. The practical application of the SR is noted.  相似文献   

18.
The temperature dependence of the permittivity of a Hg2Cl2 crystal has been investigated within the Landau phenomenological theory. At T < T C, the linear permittivity has a singularity in the form ~(T C?T)1/2; however, this anomaly may disappear in a multidomain sample. The nonlinear permittivity also has an anomaly near T C but of stronger type: ~(T C ? T)?1/2.  相似文献   

19.
The effect of uniaxial mechanical pressure σ m ≤ 150 bar on the spectral (300–800 nm) dependence of the birefringerence Δn i and refractive indices n i of (NH4)2SO4 crystals has been investigated. It is shown that the dispersion of n i (λ) and Δn i (λ) is normal and sharply increases with approach to the absorption edge. It is established that uniaxial pressure does not change the character of the dispersions dn i / and dΔn i / and only affects their magnitudes. It is shown that the increase in the refractive indices under uniaxial stress is mainly due to the increase in the refraction caused by the increase in the band gap and long-wavelength shift of the UV absorption band maximum.  相似文献   

20.
The magnetization M(H) in the superconducting state, dc magnetic susceptibility χ(T) in the normal state, and specific heat C(T) near the superconducting transition temperature T c have been measured for a series of fine-crystalline YBa2Cu3O y samples having nearly optimum values of y = 6.93 ± 0.3 and T c = (91.5 ± 0.5) K. The samples differ only in the degree of nanoscale structural inhomogeneity. The characteristic parameters of superconductors (the London penetration depth and the Ginzburg–Landau parameter) and the thermodynamic critical field H c are determined by the analysis of the magnetization curves M(H). It is found that the increase in the degree of nanoscale structural inhomogeneity leads to an increase in the characteristic parameters of superconductors and a decrease in H c(T) and the jump of the specific heat ΔC/T c. It is shown that the changes in the physical characteristics are caused by the suppression of the density of states near the Fermi level. The pseudogap is estimated by analyzing χ(T). It is found that the nanoscale structural inhomogeneity significantly enhances and probably even creates the pseudogap regime in the optimally doped high-T c superconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号