首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The focus of this work is to visualise the regions of CH2O and heat release (HR) of an unconfined turbulent premixed bluff body stabilised ethylene-air flame at conditions approaching lean blow-off using simultaneous imaging of OH- and CH2O-PLIF. The HR regions are estimated from the product of the OH and CH2O profiles. At conditions near blow-off, wide regions of CH2O are observed inside the recirculation zone (RZ). The presence of CH2O and HR inside the RZ is observed to follow fragmentation of the downstream flame parts near the top of the RZ. The presence of wide regions void of both OH and CH2O inside the RZ at conditions very close to blow-off indicates the possible entrainment of un-reacted gases into the RZ. The behaviour of the lean ethylene-air flame with Lewis number (Le) greater than 1 is compared to that of a lean methane-air flame with Le of approximately 1. For both fuels, qualitatively similar observations of flame fragmentation downstream followed by build-up of CH2O and HR inside the RZ are observed at conditions near lean blow-off. Also, a similar trend of flame front curvature conditioned on HR was observed for both the ethylene-air and methane-air flames, where the magnitude of HR was observed to increase with the absolute value of curvature.  相似文献   

2.
Detailed experimental investigation of a non-equilibrium nanosecond pulsed discharge in premixed CH4/air mixtures at atmospheric pressure has been carried out. The experiments demonstrated significant reductions in ignition delay and increased lean burn capability relative to conventional spark ignition. Advanced laser diagnostics have been used to identify the physical processes which lead to these improvements. The electron temperature and density properties were measured using laser Thomson scattering (LTS). Temperature measurements were performed using N2 CARS thermometry to quantify the energy transfer in the gas mixture. Effect of the discharge on the local temperature shows the existence of the ignition of the gas mixture for equivalence ratio between 0.7 and 1.3. Fast development of a flame kernel is then observed. The experiment also shows that the flame can be sustained above the discharge due the repetitive ignition of the flame at the plasma repetition rate. Finally, OH and CH PLIF experiments were performed to confirm the large OH and CH streamer-induced production over the discharge volume. To cite this article: F. Grisch et al., C. R. Mecanique 337 (2009).  相似文献   

3.
The first stages of laser-induced spark ignition were investigated as a function of time. Experiments were conducted using a premixed laminar CH4/air burner. Laser-induced breakdown was achieved by focusing a 532-nm nanosecond pulse from a Q-switched Nd:YAG laser. An anti-reflection coated lens with a focal length of 100 mm was used. The results obtained from an intensified high-speed and PIV CCD camera and a Cassegrain optics system coupled to an ICCD spectrometer provided information about the formation of laser-induced plasma and its transition to a flame kernel and a self-sustaining flame. The localization of the kernel and its time development were reproducible. Two types of flame fronts develop: one that expands against the flow direction, and one that moves with the flow. The initial flame expansion along the laser axis is asymmetric because of the shape of the plasma, different ionization levels inside the plasma, and the shock-wave expansion. Development of the fast flame occurs behind the shock wave induced by the plasma. This is important when laser ignition is used as a flame holder. An ICCD spectrometer coupled to an optical fiber permitted chemiluminescence visualization. The spectrum obtained during the plasma and flame kernel formation defined different stages in flame formation. The results obtained with these two optical techniques were synchronized to obtain the temporal resolution of the flame kernel evolution. Laser-induced ignition of a very lean mixture can be controlled to provide local heat release and extinction in a flame.  相似文献   

4.
Dynamic processes in gas turbine (GT) combustors play a key role in flame stabilization and extinction, combustion instabilities and pollutant formation, and present a challenge for experimental as well as numerical investigations. These phenomena were investigated in two gas turbine model combustors for premixed and partially premixed CH4/air swirl flames at atmospheric pressure. Optical access through large quartz windows enabled the application of laser Raman scattering, planar laser-induced fluorescence (PLIF) of OH, particle image velocimetry (PIV) at repetition rates up to 10 kHz and the simultaneous application of OH PLIF and PIV at a repetition rate of 5 kHz. Effects of unmixedness and reaction progress in lean premixed GT flames were revealed and quantified by Raman scattering. In a thermo-acoustically unstable flame, the cyclic variation in mixture fraction and its role for the feedback mechanism of the instability are addressed. In a partially premixed oscillating swirl flame, the cyclic variations of the heat release and the flow field were characterized by chemiluminescence imaging and PIV, respectively. Using phase-correlated Raman scattering measurements, significant phase-dependent variations of the mixture fraction and fuel distributions were revealed. The flame structures and the shape of the reaction zones were visualized by planar imaging of OH distribution. The simultaneous OH PLIF/PIV high-speed measurements revealed the time history of the flow field–flame interaction and demonstrated the development of a local flame extinction event. Further, the influence of a precessing vortex core on the flame topology and its dynamics is discussed.  相似文献   

5.
This paper presents planar imaging of laser induced fluorescence (LIF) from key reactive species in the auto-ignition region of dilute turbulent spray flames of methanol. High-speed (5?kHz) LIF-OH imaging as well as low speed (10?Hz) imaging of joint LIF-OH-CH2O is performed. The product of the OH and CH2O signals is used as a qualitative indicator of local heat release. The burner is kept intentionally simple to facilitate computations and the spray is formed upstream of the jet exit plane and carried with air or nitrogen into a hot co-flowing stream of vitiated combustion products. The studied flames are all lifted but differ in the shape of their leading edge and heat release zones. Similarities with auto-ignition of gaseous fuels, as well as differences, are noted here. Formaldehyde is detected earlier than OH implying that the former is a key precursor in the initiation of auto-ignition. Growing kernels of OH that are advected from upstream, close in on the jet centreline and ignite the main flame. The existence of double reaction zones in some flames may be due to ignitable mixtures formed subsequent to local evaporation of droplets and subsequent mixing. When air is used as spray carrier, reaction zones broaden with distance, possibly due to increased partial premixing and regions of intense heat release occur near the flame centreline further downstream. With nitrogen as carrier, the flame maintains a nominal diffusion-like structure with reaction zones of uniform width and substantially less concentration of heat release on the flame centreline.  相似文献   

6.
The effects of mixture fraction value ξ and the magnitude of its gradient |∇ξ| at the ignitor location on the localised forced ignition of turbulent mixing layers under decaying turbulence is studied based on three-dimensional compressible Direct Numerical Simulations (DNS) with simplified chemistry. The localised ignition is accounted for by a spatial Gaussian power distribution in the energy transport equation, which deposits energy over a prescribed period of time. In successful ignitions, it is observed that the flame shows a tribrachial structure. The reaction rate is found to be greater in the fuel rich side than in stoichiometric and fuel-lean mixtures. Placing the ignitor at a fuel-lean region may initiate ignition, but extinction may eventually occur if the diffusion of heat from the hot gas kernel overcomes the heat release due to combustion. It is demonstrated that ignition in the fuel lean region may fail for an energy input for which self-sustained combustion has been achieved in the cases of igniting at stoichiometric and fuel-rich locations. It is also found that the fuel reaction rate magnitude is negatively correlated with density-weighted scalar dissipation rate in the most reactive region. An increase in the initial mixture fraction gradient at the ignition centre for the ignitor placed at stoichiometric mixture decreases the spreading of the burned region along the stoichiometric mixture fraction isosurface. By contrast, the mass of the burned region increases with an increase in the initial mixture fraction gradient at the ignition location, as for a given ignition kernel size the thinner mixing layer includes more fuel-rich mixture, which eventually makes the overall burning rate greater than that compared to a thicker mixing layer where relatively a smaller amount of fuel-rich mixture is engulfed within the hot gas kernel. Submitted as a full-length article to Flow Turbulence and Combustion.  相似文献   

7.
To investigate the mechanisms leading to sustained thermoacoustic oscillations in swirl flames, a gas turbine model combustor was equipped with an optically accessible combustion chamber allowing the application of various laser techniques. The flame investigated was a swirled CH4/air diffusion flame (thermal power 10 kW, global equivalence ratio φ = 0.75) at atmospheric pressure which exhibited self-excited thermoacoustic oscillations at a frequency of 290 Hz. In separate experiments, the flow velocities were measured by laser Doppler velocimetry, the flame structures and heat release rates by planar laser-induced fluorescence of CH and by OH chemiluminescence, and the joint probability density functions of the major species concentrations, mixture fraction, and temperature by laser Raman scattering. All measurements were performed in a phase-locked mode, i.e., triggered with respect to the oscillating pressure level measured by a microphone. The results revealed large periodic variations of all measured quantities and showed that the heat release rate was correlated with the degree of mixing of hot products with unburned fuel/air mixtures before ignition. The thermal expansion of the reacting gases had, in turn, a strong influence on the flow field and induced a periodic motion of the inner and outer recirculation zones. The combination of all results yielded a deeper understanding of the events sustaining the oscillations in the flame under investigation. The results also represent a data base that can be used for the validation and improvement of CFD codes.  相似文献   

8.
Finite Rate Chemistry Effects in Highly Sheared Turbulent Premixed Flames   总被引:1,自引:0,他引:1  
Detailed scalar structure measurements of highly sheared turbulent premixed flames stabilized on the piloted premixed jet burner (PPJB) are reported together with corresponding numerical calculations using a particle based probability density function (PDF) method. The PPJB is capable of stabilizing highly turbulent premixed jet flames through the use of a small stoichiometric pilot that ensures initial ignition of the jet and a large shielding coflow of hot combustion products. Four lean premixed methane-air flames with a constant jet equivalence ratio are studied over a wide range of jet velocities. The scalar structure of the flames are examined through high resolution imaging of temperature and OH mole fraction, whilst the reaction rate structure is examined using simultaneous imaging of temperature and mole fractions of OH and CH2O. Measurements of temperature and mole fractions of CO and OH using the Raman–Rayleigh–LIF-crossed plane OH technique are used to examine the flame thickening and flame reaction rates. It is found that as the shear rates increase, finite-rate chemistry effects manifest through a gradual decrease in reactedness, rather than the abrupt localized extinction observed in non-premixed flames when approaching blow-off. This gradual decrease in reactedness is accompanied by a broadening in the reaction zone which is consistent with the view that turbulence structures become embedded within the instantaneous flame front. Numerical predictions using a particle-based PDF model are shown to be able to predict the measured flames with significant finite-rate chemistry effects, albeit with the use of a modified mixing frequency.  相似文献   

9.
Large-Eddy Simulation (LES) results in combination with first-order Conditional Moment Closure (CMC) are presented for a hydrogen jet, diluted with nitrogen, issued into a turbulent co-flowing hot air stream. The fuel mixes with the co-flow air, ignites and forms a lifted-like flame. Global trends in the experimental observations are in general well reproduced: the auto-ignition length decreases with increase in co-flow temperature and increases with increase in co-flow velocity. In the experiments, the co-flow temperature was varied, so that different auto-ignition regimes, including low Damköhler number situations, were obtained (no ignition, random spots, flashback and lifted flame). All regimes are recovered in the simulations. Auto-ignition is found to be the stabilizing mechanism. The impact of different detailed chemistry mechanisms on the auto-ignition predictions is discussed. With increasing air temperature, the differences between the mechanisms considered diminish. The evolution of temperature, H2O, H, HO2 and OH from inert to burning conditions is discussed in mixture fraction space.  相似文献   

10.
Experiments are carried out on partially premixed turbulent flames stabilized in a conical burner. The investigated gaseous fuels are methane, methane diluted with nitrogen, and mixtures of CH4, CO, CO2, H2 and N2, simulating typical products from gasification of biomass, and co-firing of gasification gas with methane. The fuel and air are partially premixed in concentric tubes. Flame stabilization behavior is investigated and significantly different stabilization characteristics are observed in flames with and without the cone. Planar laser induced fluorescence (LIF) imaging of a fuel-tracer species, acetone, and OH radicals is carried out to characterize the flame structures. Large eddy simulations of the conical flames are carried out to gain further understanding of the flame/flow interaction in the cone. The data show that the flames with the cone are more stable than those without the cone. Without the cone (i.e. jet burner) the critical jet velocities for blowoff and liftoff of biomass derived gases are higher than that for methane/nitrogen mixture with the same heating values, indicating the enhanced flame stabilization by hydrogen in the mixture. With the cone the stability of flames is not sensitive to the compositions of the fuels, owing to the different flame stabilization mechanism in the conical flames than that in the jet flames. From the PLIF images it is shown that in the conical burner, the flame is stabilized by the cone at nearly the same position for different fuels. From large eddy simulations, the flames are shown to be controlled by the recirculation flows inside cone, which depends on the cone angle, but less sensitive to the fuel compositions and flow speed. The flames tend to be hold in the recirculation zones even at very high flow speed. Flame blowoff occurs when significant local extinction in the main body of the flame appears at high turbulence intensities.  相似文献   

11.
12.
Flame–turbulence interactions are at the heart of modern combustion research as they have a major influence on efficiency, stability of operation and pollutant emissions. The problem remains a formidable challenge, and predictive modelling and the implementation of active control measures both rely on further fundamental measurements. Model burners with simple geometry offer an opportunity for the isolation and detailed study of phenomena that take place in real-world combustors, in an environment conducive to the application of advanced laser diagnostic tools. Lean premixed combustion conditions are currently of greatest interest since these are able to provide low NO x and improved increased fuel economy, which in turn leads to lower CO2 emissions. This paper presents an experimental investigation of the response of a bluff-body-stabilised flame to periodic inlet fluctuations under lean premixed turbulent conditions. Inlet velocity fluctuations were imposed acoustically using loudspeakers. Spatially resolved heat release rate imaging measurements, using simultaneous planar laser-induced fluorescence (PLIF) of OH and CH2O, have been performed to explore the periodic heat release rate response to various acoustic forcing amplitudes and frequencies. For the first time we use this method to evaluate flame transfer functions and we compare these results with chemiluminescence measurements. Qualitative thermometry based on two-line OH PLIF was also used to compare the periodic temperature distribution around the flame with the periodic fluctuation of local heat release rate during acoustic forcing cycles.  相似文献   

13.
Confined short turbulent swirling premixed and non-premixed methane and heptane spray flames stabilized on an axisymmetric bluff body in a square enclosure have been examined close to the blow-off limit and during the extinction transient with OH* chemiluminescence and OH-PLIF operated at 5 kHz. The comparison of flames of different canonical types in the same basic aerodynamic field allows insights on the relative blow-off behaviour. The flame structure has been examined for conditions increasingly closer to blow-off. The premixed flame was seen to change from a cylindrical shape at stable burning condtions, with the flame brush closing across the flow at conditions close to blow-off. The PLIF images show that for the gaseous non-premixed flame, holes appear along the flame sheet with increasing frequency as the blow-off condition is approached, while the trend is less obvious for the spray flame. Non-premixed and spray flames showed randomly-occurring lift-off, which is further evidence of localised extinction. The mean lift-off height increased with increasing fuel jet velocity and decreased with increasing air velocity and approaches zero (i.e. the flame is virtually attached) just before the blow-off condition, despite the fact that more holes were evident in the flame sheet as extinction was approached. It was found that the average duration of the blow-off event, when normalised with the characteristic flow time d/U b (d being the bluff-body diameter and U b the bulk velocity) was in the range 9–38 with the spray flame extinction lasting a shorter time than the gaseous flames. Finally, it was found that correlations based on a Damköhler number collapse the blow-off velocity data for all flames with reasonable accuracy. The results can help the development of advanced turbulent combustion models.  相似文献   

14.
This paper reports on experimental investigations of turbulent flame-wall interaction (FWI) during transient head-on quenching (HOQ) of premixed flames. The entire process, including flame-wall approach and flame quenching, was analyzed using high repetition rate particle image velocimetry (PIV) and simultaneous flame front tracking based on laser-induced fluorescence (LIF) of the OH molecule. The influence of convection upon flame structures and flow fields was analyzed qualitatively and quantitatively for the fuels methane (CH4) and ethylene (C2H4) at ? = 1. For this transient FWI, flames were initialized by laser spark ignition 5 mm above the burner nozzle. Subsequently, flames propagated against a steel wall, located 32 mm above the burner nozzle, where they were eventually quenched in the HOQ regime due to enthalpy losses. Twenty ignition events were recorded and analyzed for each fuel. Quenching distances were 179 μm for CH4 and 159 μm for C2H4, which lead by nondimensionalization with flame thickness to Peclet numbers of 3.1 and 5.5, respectively. Flame wrinkling and fresh gas velocity fluctuations proved flame and flow laminarization during wall approach. Velocity fluctuations cause flame wrinkling, which is higher for CH4 than C2H4 despite lower velocity fluctuations. Lewis number effects explained this phenomenon. Results from flame propagation showed that convection dominates propagation far from the wall and differences in flame propagation are related to the different laminar flame speeds of the fuels. Close to the wall flames of both fuels propagate similarly, but experimental results clearly indicate a decrease in intrinsic flame speed. In general, the experimental results are in good agreement with other experimental studies and several numerical studies, which are mainly based on direct numerical simulations.  相似文献   

15.
A systematic study relying on Direct Numerical Simulations (DNS) of premixed hydrogen-air mixtures has been performed to investigate the hotspot ignition characteristics and ignition probability under turbulent conditions. An ignition diagram is first obtained under laminar conditions by a parametric study. The impact of turbulence intensity on ignition delays and ignition probability is then quantified in a statistically-significant manner by repeating a large number of independent DNS realizations. By tracking in a Lagrangian frame the ignition spot, the balance between heat diffusion and heat of chemical reaction is observed as function of time. The evolution of each chemical species and radicals at the ignition spot is checked and the mechanism leading to ignition or misfire are analyzed. It is observed that successful ignition is mostly connected to a sufficient build-up of a HO2 pool, ultimately initiating production of OH. Turbulence always delays ignition, and ignition probability goes to zero at sufficiently high turbulence intensity when keeping temperature and size of the initial hotspot constant.  相似文献   

16.
The ignition of hydrogen-air mixtures by a stationary hot glow plug has been experimentally investigated using two-color pyrometry and interferometry. The ignition process was characterized by the surface temperature at ignition, as well as by the location where the initial flame kernel was formed. The experimental results indicate that: (i) the ignition temperature threshold is a function of equivalence ratio; (ii) the ignition location is a function of the rate at which the glow plug is heated because high heating rates favor non-uniform heating. As a result, ignition occurs on the side rather than near the top face of the glow plug. Comparison with two-dimensional numerical simulations exhibits discrepancies in terms of the temperature threshold value and dependence on equivalence ratio. Simulations performed imposing a non-uniform surface temperature show that a temperature difference between the side and the top of the glow plug as low as 12.5 to 25 K resulted in side ignition for hydrogen-air mixtures. The effect of surface chemistry was estimated numerically by imposing a boundary condition of zero species concentration for intermediate species, H and HO2, at the hot surface, which increased the ignition threshold by up to 50 K for an initial H2 concentration of 70%. The present study shows that surface temperature non-uniformity, heterogeneous chemistry and reaction model used, could influence the experimentally reported and numerically predicted ignition threshold as well as the location of ignition.  相似文献   

17.
The present study investigated numerically the physical mechanisms underlying the transient behaviors of the flame over a porous cylindrical burner. The numerical results showed that a cold flow structure at a fixed inflow velocity of Uin = 0.6 m/s in a wind tunnel could be observed in two co-existing recirculation flows. Flow variations occur repeatedly until t = 4.71 s, and then a vortex existed steadily behind the burner and no shading occurred. The ignition of flammable mixture led to a rapid rise in gas temperature and a sudden gas expansion. When it reached the stable envelope flame condition, Uin is adjusted to an assigned value. Two blow-off mechanisms were identified. It was also found in the study flame shapes with buoyancy effects agreed with the ones observed experimentally by Tsai. Furthermore, the lift-off flame would appear briefly between the envelopes and wake ones, and was stabilized as a wake flame.  相似文献   

18.
A swirl-stabilised, lean, partially premixed combustor operating at atmospheric conditions has been used to investigate the local curvature distributions in lifted, stable and thermoacoustically oscillating CH4-air partially premixed flames for bulk cold-flow Reynolds numbers of 15,000 and 23,000. Single-shot OH planar laser-induced fluorescence has been used to capture instantaneous images of these three different flame types. Use of binary thresholding to identify the reactant and product regions in the OH planar laser-induced fluorescence images, in order to extract accurate flame-front locations, is shown to be unsatisfactory for the examined flames. The Canny-Deriche edge detection filter has also been examined and is seen to still leave an unacceptable quantity of artificial flame-fronts. A novel approach has been developed for image analysis where a combination of a non-linear diffusion filter, Sobel gradient and threshold-based curve elimination routines have been used to extract traces of the flame-front to obtain local curvature distributions. A visual comparison of the effectiveness of flame-front identification is made between the novel approach, the threshold binarisation filter and the Canny-Deriche filter. The novel approach appears to most accurately identify the flame-fronts. Example histograms of the curvature for six flame conditions and of the total image area are presented and are found to have a broader range of local flame curvatures for increasing bulk Reynolds numbers. Significantly positive values of mean curvature and marginally positive values of skewness of the histogram have been measured for one lifted flame case, but this is generally accounted for by the effect of flame brush curvature. The mean local flame-front curvature reduces with increasing axial distance from the burner exit plane for all flame types. These changes are more pronounced in the lifted flames but are marginal for the thermoacoustically oscillating flames. It is concluded that additional fuel mixture fraction and velocimetry studies are required to examine whether processes such as the degree of partial-premixedness close to the burner exit plane, the velocity field and the turbulence field have a strong correlation with the curvature characteristics of the investigated flames.  相似文献   

19.
The structure of autoignition in a mixing layer between fully-burnt or partially-burnt combustion products from a methane-air flame at ? = 0.85 and a methane-air mixture of a leaner equivalence ratio has been studied with transient diffusion flamelet calculations. This configuration is relevant to scavenged pre-chamber natural-gas engines, where the turbulent jet ejected from the pre-chamber may be quenched or may be composed of fully-burnt products. The degree of reaction in the jet fluid is described by a progress variable c (c = taking values 0.5, 0.8, and 1.0) and the mixing by a mixture fraction ξ (ξ = 1 in the jet fluid and 0 in the CH4-air mixture to be ignited). At high scalar dissipation rates, N0, ignition does not occur and a chemically-frozen steady-state condition emerges at long times. At scalar dissipation rates below a critical value, ignition occurs at a time that increases with N0. The flame reaches the ξ = 0 boundary at a finite time that decreases with N0. The results help identify overall timescales of the jet-ignition problem and suggest a methodology by which estimates of ignition times in real engines may be made.  相似文献   

20.
This work describes essential aspects of the ignition and deflagration process initiated by the injection of a hot transient gas jet into a narrowly confined volume containing air-CH4-H2 mixture. Driven by the pressure difference between a prechamber and a long narrow constant-volume-combustion (CVC) chamber, the developing jet or puff involves complex processes of turbulent jet penetration and evolution of multi-scale vortices in the shear layer, jet tip, and adjacent confined spaces. The CVC chamber contains stoichiometric mixtures of air with gaseous fuel initially at atmospheric conditions. Fuel reactivity is varied using two different CH4/H2 blends. Jet momentum is varied using different pre-chamber pressures at jet initiation. The jet initiation and the subsequent ignition events generate pressure waves that interact with the mixing region and the propagating flame, depositing baroclinic vorticity. Transient three-dimensional flow simulations with detailed chemical kinetics are used to model CVC mixture ignition. Pre-ignition gas properties are then examined to develop and verify criteria to predict ignition delay time using lower-cost non-reacting flow simulations for this particular case of study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号