首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
In this study, three new aminobiphenylglyoximes, [L1H2] N-(2-methoxy)aminobiphenylglyoxime, [L2H2] N-(3-methoxy)aminobiphenylglyoxime and L[3H2] N-(4-methoxy)aminobiphenylglyoxime have been synthesized by the reaction of (E,E)-4′-biphenylchloroglyoxime with 2-Methoxyaniline, 3-Methoxyaniline and 4-Methoxyaniline in absolute ethanol. The preparation NiII, CoII and CuII complexes of these ligands are described. The ligands and their complexes were characterized by elemental analyses, IR, mass, H1 and 13C NMR spectra, thermogravimetric analyses (t.g.a) and magnetic susceptibility measurements. Ligands complexing properties were studied by the liquid–liquid extraction of selected alkali (Li+, Na+, K+, Cs+) and transition metals (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+). It has been observed that all ligands show a high affinity to Cu2+ ions, whereas almost no affinity to alkali metals. The extraction equilibrium constants (K ex) for complexes of ligands with Cu2+ metal picrates between dichloromethane and water have been determined at 25°C.  相似文献   

2.
Four different types of new ligands Ar[COC(NOH)R] n (Ar=biphenyl, n = 1 H2L1; Ar=biphenyl, n = 2 H4L2; Ar=diphenylmethane, n = 1 H2L3; Ar=diphenylmethane, n = 2 H4L4; R=2-amino-4-chlorophenol in all ligands) have been obtained from 1 equivalent of chloroketooximes Ar[COC(NOH)Cl] n (HL1-H2L4) and 1 equivalent of 2-amino-4-chlorophenol (for H2L1 and H2L3) or 2 equivalent of 2-amino-4-chlorophenol (for H4L2 and H4L4). (Mononuclear or binuclear cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized with these ligands.) These compounds have been characterized by elemental analyses, AAS, infra-red spectra and magnetic susceptibility measurements. The ligands have been further characterized by 1H NMR. The results suggest that the dinuclear complexes of H2L1 and H2L3 have a metal:ligand ratio of 1:2; the mononuclear complexes of H4L2 and H4L4 have a metal:ligand ratio of 1:1 and dinuclear complexes H4L2 and H4L4 have a metal:ligand ratio of 2:1. The binding properties of the ligands towards selected transition metal ions (MnII, CoII, NiII, CuII, ZnII, PbII, CdII, HgII) have been established by extraction experiments. The ligands show strong binding ability towards mercury(II) ion. In addition, the thermal decomposition of some complexes is studied in nitrogen atmosphere.  相似文献   

3.
Three new vic-dioxime ligands, [N-(ethyl-4-amino-1-piperidine carboxylate)-phenylglyoxime (L1H2), N-(ethyl-4-amino-1-piperidine carboxylate)-glyoxime (L2H2), and N,N′-bis(ethyl-4-amino-1-piperidine carboxylate)-glyoxime (L3H2)], and their Co(II) with Cu(II) metal complexes, were synthesized for the first time. Mononuclear complexes of these ligands with a 1:2 metal-ligand ratio were prepared with Co(II) and Cu(II) salts. The BF2+-capped Co(II) and mononuclear complexes of the vic-dioxime were prepared for [Co(L1·BF2)2] and [Co(L2·BF2)2]. The ligands act in a polydentate fashion bonding through nitrogen atoms in the presence of a base, as do most vic-dioximes. The cobalt(II) and copper(II) complexes are non-electrolytes as shown by their molar conductivities (ΛM) in DMF. The structures of the ligands and complexes were determined by elemental analyses, FT-i.r., u.v.–vis., 1H- and 13C-n.m.r. spectra, magnetic susceptibility measurements, and molar conductivity. The comparative electrochemical studies show that the stabilities of the reduced or oxidized species and the electrode potentials of the complexes are affected by the substituents attached on the oxime moieties of the complexes.  相似文献   

4.
The reaction of copper(II) salts with (E)-N-(2-hydroxy-1,2-di(pyridin-2-yl)ethylidene)aroyl hydrazide (H2L1, H2L2, H3L3) or (E)-N-(2-hydroxy-1,2-di(pyridin-2-yl)ethylidene) isonicotinohydrazide (H2L4) afforded the complexes [(L)Cu(H2O)3], [(H2L)Cu(OAc)(H2O)], [(HL)Cu(OAc)] n , [(H2L)Cu(H2O)](ClO4)2 and [(H2L)Cu(OAc)(H2O)], where n = 1 or 2 and L is the dinegative ion of the ligands. The ligands and their complexes are characterized by elemental analyses, spectral (IR, NMR, electronic, and ESR) and magnetic studies. The FT-IR indicates that the ligands are neutral or anionic polydentate. The number of the coordinating centers depends on the nature of the metal used and the reaction conditions. The room temperature magnetic moment values, electronic spectra and ESR data indicate square planar, trigonal bipyramidal, square pyramidal, and distorted octahedral ligand fields around copper(II). Thermal decomposition of the complexes was monitored by TG and DTG under N2 and the thermal decomposition mechanisms are given. The compounds were screened for their antimicrobial activities on some Gram-positive and Gram-negative bacterial species. The free ligands are inactive against all studied bacteria. The complexes have variable activity with the most active [(H2L)Cu(H2O)](ClO4)2, where H2L is H2L1 or H2L2. The minimum inhibition concentrations for these two complexes were determined. These biological activity results are related to the structures of the compounds.  相似文献   

5.
Two new hexadentate N2O4 donor Schiff bases, H4L1 and H4L2, were synthesized by condensation of 4,6-diacetylresorcinol with glycine and alanine, respectively. The structures of the ligands were elucidated by elemental analyses, IR, 1H NMR, electronic, and mass spectra. Reactions of the Schiff bases with copper(II), nickel(II), and iron(III) nitrates in 1 : 2 molar ratio gave binuclear metal complexes and, in the presence of 8-hydroxyquinoline (8-HQ) or 1,10-phenanthroline (Phen) as secondary ligands (L′), mixed-ligand complexes in two molar ratios 1 : 2 : 2 and 1 : 2 : 1 (L1/L2 : M : L′). The complexes were characterized by elemental and thermal analyses, IR, electronic, mass, and ESR spectral studies, as well as conductivity and magnetic susceptibility measurements. The spectroscopic data reveal that the Schiff-base ligands were dibasic or tetrabasic hexadentate ligands. The coordination sites with the metal ions are two azomethine nitrogens, two oxygens of phenolic groups, and two oxygens of carboxylic groups. Copper(II) complexes were octahedral and square planar while nickel(II) and iron(III) complexes were octahedral. The Schiff bases, H4L1 and H4L2, and some of their metal complexes showed antibacterial activity towards Gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and Gram-negative (Pseudomonas fluorescens and Pseudomonas phaseolicola) bacteria and antifungal activity towards the fungi Fusarium oxysporium and Aspergillus fumigatus.  相似文献   

6.
Three asymmetric Schiff-base tetradentate diimines H2L1, H2L2, and H2L3 [(2-OH)C6H4N=CHC6H42-N=CHC6H3(2-OH)(5-X), X?=?H, CH3, Cl respectively] have been synthesized by a two step process. The reaction of 2-hydroxy aniline with 2-nitro-benzaldehyde in EtOH gave the starting Schiff base, 2-hydroxy-N-(2-nitrobenzylidene)aniline (SB-NO2), which was reduced into the amino derivative (SB-NH2) in solution. Reacting SB-NH2 with 2-hydroxybenzaldehyde, 2-hydroxy-5-methylbenzaldehyde and 2-hydroxy-5-chlorobenzaldehyde gave the three new ligands H2L1, H2L2, and H2L3 respectively. Their dimeric, binuclear metal complexes with Ni(II) and Fe(III) have also been synthesized. The ligands and their complexes were characterized by elemental analyses, LC–MS, IR, electronic, 1H and 13C-NMR spectra, TGA, conductivity and magnetic measurements. All of the spectroscopic, analytical and other data indicate octahedral geometry M2L2(H2O)X2 (M: Ni,Co;X: Cl or H2O), except for NiL2 which is monomeric. Antimicrobial activities of the ligands and the complexes were evaluated against five bacteria. While the ligands and the Ni complexes are inactive towards Pseudomonas aeruginosa and Staphylococcus aureus, Fe complexes are active; only Fe complexes are inactive against Escherichia coli. All of the compounds have antimicrobial activities against Bacillus subtilis, and Yersinia enterecolitica.  相似文献   

7.
A series of alkanediyl‐spaced bis‐bisurea ligands ( L2 – L4 ) were synthesized and their anion coordination behavior studied. These ligands form interesting complexes with polymeric and oligomeric dihydrogen phosphate aggregates in the solid state. The ligands L2 and L3 coordinate with H2PO4 anions to form a unique molecular “necklace” with an infinite (H2PO4)n chain and surrounding ligand molecules. Meanwhile, two different dihydrogen phosphate‐water oligomers, (H2PO4)6 · (H2O)4 and (H2PO4)4 · (H2O)2, were observed in the complexes with the ligands L3 and L4 . In addition, solution anion binding properties of the ligands were studied by 1H NMR and UV/Vis spectroscopy.  相似文献   

8.
溶液中N-乙酸基取代氮氧杂大环及其配合物稳定性研究   总被引:1,自引:0,他引:1  
用pH电位滴定法在25℃,0.5mol·L-1KNO3水溶液中测定了三种大环化合物:H2L1(1,12-二氮杂-3,4:9,10-二苯并-5,8-二氧杂环十五烷-N,N'-二乙酸);H3L2(1,12,15-三氮杂-3,4:9,10-二苯并-5,8-二氧杂环十七烷-N,N',N″-三乙酸)和H2L3(1,15-二氮杂-3,4:12,13-二苯并-5,8,11-三氧杂环十八烷-N,N′-二乙酸)的逐级质子化常数.又测定了它们与Cu2+、Ni2+、Pb2+配合物的稳定常数,以及H2L3与镧系金属La3+、Pr3+、Nd3+、Eu3+、Sm3+、Gd3+、Dy3+、Yb3+配合物的稳定常数.讨论了三种大环化合物质子化的一般顺序及其与各种离子配位时稳定性选择规律.说明了影响配位稳定性的有关因素.  相似文献   

9.
In this study, two new vic-dioxime ligands and their complexes with Co2+, Ni2+, and Cu2+ ions were synthesized. Secondary amines (morpholine and piperidine) reacted with anti-chloroglyoxime to give morpholineglyoxime (H2L1) and piperidineglyoxime (H2L2) ligands. All the complexes have a metal to ligand ratio of 1 : 2. The structure of the ligands and their complexes was proposed from elemental analyses, IR, UV-VIS, 1H and 13C NMR spectra, conductivity, magnetic susceptibility measurements, and thermogravimetric analyses.__________From Koordinatsionnaya Khimiya, Vol. 31, No. 7, 2005, pp. 535–539.Original English Text Copyright © 2005 by Ozkan, Canpolat, Kaya.The text was submitted by the authors in English.  相似文献   

10.
Monomeric copper(II) and nickel(II) complexes with tetradentate two new ligands, 2,2′-[(2E,5E)-hexane-2,5-diylidenedi- nitrilo]dibenzenethiol(H2L) and 2-hydroxybenzaldehyde (2E,5E)-hexane-2,5-diylidenehydrazone(H2L1) have been synthesized and characterized by elemental analyses, magnetic moments, molar conductance, 1H-NMR and 13C-NMR, IR, mass spectral studies, theoretical calculations (MM2 and AM1) molecular methods. The mononuclear metal complexes of H2L and (H2L1) were found to have a 1:1 metal:ligand ratio. Elemental analyses, stoichiometric and spectroscopic data of metal complexes indicated that the metal ions were coordinated to the sulphur (-SH) and/or (-OH) oxygen and imine nitrogen atoms (C = N). All of the data obtained from spectral, and molecular mechanics (MM2) or semi empirical calculations (AM1) studies support the structural properties of ligands and its Cu(II) and Ni(II) metal complexes.  相似文献   

11.
Macrocyclic ligands N,N-bis[2,6-diiminomethyl-4-methyl-1-hydroxyphenyl]succinoyl dicarboxamide (H2L1) and N,N-bis[2,6-diiminomethyl-4-methyl-1-hydroxyphenyl]sebacoyl dicarboxamide (H2L2) were synthesized and characterized by various spectral techniques. Macrocyclic di- and tetra-homonuclear phenoxo bridged CuII, CoII, NiII, ZnII, CdII and HgII complexes have been synthesized through the template method by using the precursors 2,6-diformyl-4-methylphenol, succinoyldihydrazide/ sebacoyldihydrazide and respective metal chlorides in 2:2:2/2:2:4 ratio respectively. The synthesized complexes were characterized by i.r., n.m.r., u.v.-vis., FAB-mass, e.s.r., magnetic susceptibility and elemental analyses data. The elemental analyses and FAB-mass spectral data have justified the dinuclear and tetra nuclear structure for the complexes of the ligands H2L1 and H2L2 respectively. The observed low magnetic moment values revealed the existence of antiferromagnetic spin exchange interaction operating between the two metal centers. Electronic data suggested the octahedral geometry for NiII complexes and square pyramidal geometry for CuII, CoII, ZnII, CdII and HgII complexes of both the ligands. The CuII, CoII and ZnII complexes of both the ligands have shown good antifungal activity against Aspergillus niger and Fusarium oxysporum and medium to weak antibacterial activity against Escherichia coli and Staphylococcus aureus when compared to the standard drugs Grisefulvin and Ciprofloxacin respectively.  相似文献   

12.
A rare example of a mononuclear complex [(bpy)2Ru(L1?H)](ClO4), 1 (ClO4) and dinuclear complexes [(bpy)2Ru(μ‐L1?2H)Ru(bpy)2](ClO4)2, 2 (ClO4)2, [(bpy)2Ru(μ‐L2?2H)Ru(bpy)2](ClO4)2, 3 (ClO4)2, and [(bpy)2Ru(μ‐L3?2H)Ru(bpy)2](ClO4)2, 4 (ClO4)2 (bpy=2,2′‐bipyridine, L1=2,5‐di‐(isopropyl‐amino)‐1,4‐benzoquinone, L2=2,5‐di‐(benzyl‐amino)‐1,4‐benzoquinone, and L3=2,5‐di‐[2,4,6‐(trimethyl)‐anilino]‐1,4‐benzoquinone) with the symmetrically substituted p‐quinone ligands, L, are reported. Bond‐length analysis within the potentially bridging ligands in both the mono‐ and dinuclear complexes shows a localization of bonds, and binding to the metal centers through a phenolate‐type “O?” and an immine/imminium‐type neutral “N” donor. For the mononuclear complex 1 (ClO4), this facilitates strong intermolecular hydrogen bonding and leads to the imminium‐type character of the noncoordinated nitrogen atom. The dinuclear complexes display two oxidation and several reduction steps in acetonitrile solutions. In contrast, the mononuclear complex 1 + exhibits just one oxidation and several reduction steps. The redox processes of 1 1+ are strongly dependent on the solvent. The one‐electron oxidized forms 2 3+, 3 3+, and 4 3+ of the dinuclear complexes exhibit strong absorptions in the NIR region. Weak NIR absorption bands are observed for the one‐electron reduced forms of all complexes. A combination of structural data, electrochemistry, UV/Vis/NIR/EPR spectroelectrochemistry, and DFT calculations is used to elucidate the electronic structures of the complexes. Our DFT results indicate that the electronic natures of the various redox states of the complexes in vacuum differ greatly from those in a solvent continuum. We show here the tuning possibilities that arise upon substituting [O] for the isoelectronic [NR] groups in such quinone ligands.  相似文献   

13.
Abstract

Reaction of VO(acac)2 with the hydrazone ligands N’-(2-hydroxybenzylidene)-3methylbenzohydrazide (H2L1) and N’-(2-hydroxybenzylidene)-3-methyl-4-nitrobenzohydrazide (H2L2) afforded two oxidovanadium(V) complexes, [VOL1(OMe)(MeOH)] (1) and [VOL2(OEt)(EtOH)] (2), respectively. The complexes have been characterized by elemental analyses, IR, UV-Vis, molar conductivity and X-ray single crystal diffraction techniques. The hydrazone ligands coordinate to the V ions through the phenolate oxygen, imino nitrogen and enolate oxygen atoms. The V ions in both complexes are in octahedral coordination, with the three donor atoms of the hydrazone ligands, and with the other three sites furnished by one methanol or ethanol oxygen atom, one deprotonated methanol or ethanol oxygen atom, and one oxo oxygen. The complexes were assayed for their antibacterial activity on the bacteria B. subtilis, E. coli, P. putida and S. aureus.  相似文献   

14.
Three new potentially hexadentate N4O2 Schiff-base ligands (H2L1, H2L2 and H2L3) were prepared from the reaction of the polyamines N,N′-bis(2-aminophenyl)-1,2-ethanediamine (L1), N,N′-bis(2-aminophenyl)-1,3-propanediamine (L2) and N,N′-bis(2-aminophenyl)-1,4-butanediamine (L3), respectively with salicylaldehyde. Reaction of the Schiff bases with Ni(II) salts in the presence of N(Et)3 gave the neutral complexes [NiL4], [NiL5] and [NiL6]. Ni(II) complexes of the polyamines were also prepared. One of complexes [Ni(L1)(MeCN)2](ClO4)2·MeCN has been characterized through X-ray diffraction methods.  相似文献   

15.
A novel series of mixed-ligand complexes of 5,5′-{(1E,1E′)-1,4-phenelynebis(diazene-2,1-diyl)}bis(quinolin-8-ol) (H2L1) as a primary ligand and 4-aminoantipyrine(L2) as a secondary ligand with Mn(II) ion were prepared using two general formulae: [Mn2(H2L1)2(L2)2X4].4Cl (X = OH2( 1 ), ONO2( 2 ), Cl=nil; OAc( 3 ), Cl = nil) and [Mn2(H2L1)(L2)2(O2SO2)2]( 4 ). Free ligands and their complexes were characterized. Electronic absorption spectra of the mixed-ligand complexes indicate a distorted octahedral geometry around the central metal ion, and the anions X are in the axial positions for all compounds. The ligands behave in a neutral bidentate manner, through nitrogen atoms and oxygen atoms of the carbonyl group (L2), whereas H2L1 coordinated through nitrogen and OH groups as a neutral bidentate ligand. All complexes do not contain coordinated water molecules, but complex ( 1 ) contains four water molecules. The water molecules are removed in a single step. The complexes exhibited magnetic susceptibility corresponding to five unpaired electrons. The antimicrobial activity of the Mn(II) mixed-ligand complexes ( 1–4 ) against two gram-positive bacteria, three local gram-negative bacteria, and three fungi species was tested. Mn(II) mixed-ligand complex ( 2 ) exhibited significant antibacterial activity against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas sp. Mixed-ligand complex ( 2 ) exhibited a high potential cytotoxicity against the growth of human lung cancer cells.  相似文献   

16.
Two new soluble vic-dioxime ligands, 4-isopropylanilineglyoxime (L1H2) and 4-benzylpiperidineglyoxime (L2H2) were prepared by reacting 4-isopropylaniline and 4-benzylpiperidine with anti-chloroglyoxime. Ten metal complexes were obtanied by reacting both ligands with Cu(II),Ni(II),Co(II), Zn(II), and Cd(II) cations. The ligands and their metal complexes were elucidated by elemental analysis, IR, UV-vis, 1H NMR, and 13C NMR and also magnetic moments of the complexes were determined. The text was submitted by the authors in English.  相似文献   

17.
4,6-Diacetylresorcinol serves as a starting point for the generation of multidentate S/N/O or O/N/O symmetrical chelating agents by condensation with thiosemicarbazide or semicarbazide to yield the corresponding bis(thiosemicarbazone) H4L1 or bis(semicarbazone) H4L2, respectively. Reaction of H4L1 and H4L2 with M(NO3)2·6H2O (M?=?Co or Ni) afforded dimeric complexes for H4L1 and binuclear complexes for H4L2, revealing the tendency of S to form bridges. The dimeric cobalt complexes of H4L1 are very interesting in that they contain CoII/CoIII, side/side, low-spin octahedral coordinated CoIII-ions and high-spin square-planar coordinated CoII-ions. These complexes have the general formula [(H2L1)2Co2(H2O) (NO3)]·nEtOH. Arguments supporting these anomalous CoII/CoIII structures are based on a pronounced decrease in their magnetic moments, elemental and thermal analyses, visible and IR spectra, as well as their unreactivity towards organic bases such as 1,10-phenanthroline (phen), 2,2′-bipyridine (Bpy), N,N,N′,N′-tetramethylethylenediamine (Tmen) and 8-hydroxyquinoline (oxine, Ox). The dimeric octahedral NiII complex [(H2L1)2Ni2(H2O)4]·3H2O showed higher reactivity towards phen and Bpy and formed adducts; [(HL1)Ni2(B)(H2O)5] NO3 (B?=?phen or Bpy). In the presence of oxine, the dimeric brown paramagnetic octahedral complex [(H2L1)2Ni2(H2O)4]·3H2O was transformed to the dimeric brick-red diamagnetic square-planar complex [(H3L1)2Ni2](NO3)2. The latter showed dramatic behavior in its 1H NMR spectrum in DMSO-d 6, which was explained on the basis of H+-transfer. By contrast, the binuclear NiII–H4L2 complex (11) showed higher reactivity towards phen, Bpy and oxine. These reactions afforded mixed dimeric complexes having the molar ratio 2?:?2?:?1 (NiII?:?H4L2?:?base). The binuclear CoII–H4L2 complex afforded an adduct with phen and trinuclear complexes with Bpy and oxine. All complexes were found to be unreactive towards Tmen. Structural characterization was achieved by elemental and thermal analyses, spectral data (electronic, IR, mass and 1H NMR spectra) and conductivity and magnetic susceptibility measurements.  相似文献   

18.
Thiosemicarbazide copper (II) complexes; [Cu2(HL1)2(H2O)2Cl2].H2O (1) and [Cu2(HL2)2(H2O)2Cl2].2H2O (2) (where H2L1 = 2-picolinoyl-N-(pyridin-2-yl)hydrazine-1-carbothioamide and H2L2 = 2-(2-(2-aminothiazol-4-yl)acetyl)-N-(pyridin-2-yl)hydrazine-1-carbothioamide) have been synthesized and characterized. Analytical and spectroscopic data revealed that ligands behaves as monobasic tetradentate with octahedral geometry. In addition, the optimized geometry of the ligands and their complexes was approved with the Jaguar 9.1 program in the Schrödinger set using DFT (density functional theory) to predict chemical processes and to estimate the properties of the material made by the hybrid functional density system B3LYP. Furthermore, the thermal degradation curves of complexes were discussed in order to determine the kinetic and thermodynamic parameters by various approaches. Additionally, the antioxidant (using the DPPH and SOD methods) and the antibacterial potency of the compounds were examined. Also, docking study of ligands and their complexes was carried out against Staphylococcus aureus gram +ve, gram -ve bacterial strains of Escherichia coli and Candida albicans using the XP glide protocol of Schrödinger suite.  相似文献   

19.
Dinuclear arene ruthenium complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene?=?C6H6; p iPrC6H4Me; C6Me6) and monomeric cyclopentadienyl complexes [(η5-Cp)Ru(PPh3)2Cl] (Cp?=?cyclopentadienyl) react with polypyridyl nitrogen ligands L1 (3-(pyridin-2-yl)-1H-1,2,4-triazole) and L2 (1,3-bis(di-2-pyridylaminomethyl)benzene) in methanol to afford cationic mononuclear compounds [(η6-arene)Ru(L1)Cl]+ (arene?=?C6H6, 1; p iPrC6H4Me, 2; C6Me6, 3), [(η6arene)Ru(L2)Cl]+ (arene?=?C6H6, 4; p iPrC6H4Me, 5; C6Me6, 6), [(η5-Cp)Ru(L1)(PPh3)]+ (7), and [(η5Cp)Ru(L2)(PPh3)]+ (8). All cationic mononuclear compounds were isolated as their hexafluorophosphate salts and characterized by elemental analyses, NMR, and IR spectroscopic methods and some representative complexes by UV-Vis spectroscopy. The solid state structures of two derivatives, [6]PF6 and [7]PF6, have been determined by the X-ray structure analysis.  相似文献   

20.
New Schiff bases, N,N′-bis(salicylidene)-4-aminobenzylamine (H2L1), N,N′-bis(3-methoxysalicylidene)-4-aminobenzylamine (H2L2), and N,N′-bis(4-hydroxysalicylidene)-4-aminobenzylamine (H2L3), with their nickel(II), cobalt(II), and copper(II) complexes have been synthesized and characterized by elemental analyses, electronic absorption, FT-IR, magnetic susceptibility, and conductance measurements. For the ligands, 1H and 13C NMR and mass spectra were obtained. The tetradentate ligands coordinate to the metal ions through the phenolic oxygen and azomethine nitrogens. The keto-enol tautomeric forms of the Schiff bases H2L1, H2L2, and H2L3 have been investigated in polar and apolar solvents. All compounds were non-electrolytes in DMSO (~10?3 M) according to the conductance measurements. Antimicrobial activities of the Schiff bases and their complexes have been tested against Acinobacter baumannii, Pseudomonas aeruginosa, Micrococcus luteus, Bacillus megaterium, Corynebacterium xerosis, Staphylococcus aureus, Escherichia coli, Candida albicans, Rhodotorula rubra, and Kluyveromyces marxianus by the disc diffusion method; biological activity increases on complexation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号