首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-dimensional (2D) organic–inorganic hybrid perovskites, benefiting from their natural anisotropy of quantum-well motifs and optical properties, have shown remarkable polarization-dependent responses superior to the 3D counterparts. Here, for the first time, multiwavelength polarization-sensitive detectors were fabricated by using single crystals of a guanidine-based 2D hybrid perovskite, (BA)2(GA)Pb2I7 (where BA+ is n-butylammonium and GA+ is guanidium). Its unique 2D quantum-well structure results in strong crystallographic-dependence of optical absorption. Strikingly, our crystal-based photodetector exhibits a prominent photocurrent dichroic ratio (Imax/Imin) of ∼2.2 at 520 nm, higher than the typical 2D inorganic materials (GeSe, ∼1.09, PdSe2, ∼1.8). In addition, notable dichroic ratios of 1.29 and 1.23 at 405 nm and 637 nm are also created for the multiwavelength polarized-light detection. The prominent detecting performances, including low dark current (1.6×10−11 A), considerable on/off ratio (∼2×103), high photodetectivity (∼3.3×1011 Jones) and responsivity (∼12.01 mA W−1), make (BA)2(GA)Pb2I7 a promising candidate for polarized-light detection. This work sheds light on the rational engineering of new 2D hybrid perovskites for the high-performance optoelectronic device applications.  相似文献   

2.
The fabrication of high‐quality film with large grains oriented along the direction of film thickness is important for 2D Ruddlesden–Popper perovskite‐based solar cells (PVSCs). High‐quality 2D BA2MAn?1PbnI3n+1 (BA+=butylammonium, MA+=methylammonium, n=5) perovskite films were fabricated with a grain size of over 1 μm and preferential orientation growth by introducing a second spacer cation (SSC+) into the precursor solution. Dynamic light scattering showed that SSC+ addition can induce aggregation in the precursor solution. The precursor aggregates are favorable for the formation of large crystal grains by inducing nucleation and decreasing the nucleation sites. Applying phenylethylammonium as SSC+, the optimized inverted planar PVSCs presented a maximum PCE of 14.09 %, which is the highest value of the 2D BA2MAn?1PbnI3n+1 (n=5) PVSCs. The unsealed device shows good moisture stability by maintaining around 90 % of its initially efficiency after 1000 h exposure to air (Hr=25±5 %).  相似文献   

3.
3D and 2D hybrid perovskites, which have been known for more than 20 years, have emerged recently as promising materials for optoelectronic applications, particularly the 3D compound (CH3NH3)PbI3 (MAPI). The discovery of a new family of hybrid perovskites called d ‐MAPI is reported: the association of PbI2 with both methyl ammonium (MA+) and hydroxyethyl ammonium (HEA+) cations leads to a series of five compounds with general formulation (MA)1−2.48x(HEA)3.48x[Pb1−xI3−x]. These materials, which are lead‐ and iodide‐deficient compared to MAPI while retaining 3D architecture, can be considered as a bridge between the 2D and 3D materials. Moreover, they can be prepared as crystallized thin films by spin‐coating. These new 3D materials appear very promising for optoelectronic applications, not only because of their reduced lead content, but also in account of the large flexibility of their chemical composition through potential substitutions of MA+, HEA+, Pb2+ and I ions.  相似文献   

4.
The trapping of a silicon(I) radical with N-heterocyclic carbenes is described. The reaction of the cyclic (alkyl)(amino) carbene [cAACMe] (cAACMe=:C(CMe2)2(CH2)NAr, Ar=2,6-iPr2C6H3) with H2SiI2 in a 3:1 molar ratio in DME afforded a mixture of the separated ion pair [(cAACMe)2Si:.]+I ( 1 ), which features a cationic cAAC–silicon(I) radical, and [cAACMe−H]+I. In addition, the reaction of the NHC–iodosilicon(I) dimer [IAr(I)Si:]2 (IAr=:C{N(Ar)CH}2) with 4 equiv of IMe (:C{N(Me)CMe}2), which proceeded through the formation of a silicon(I) radical intermediate, afforded [(IMe)2SiH]+I ( 2 ) comprising the first NHC–parent-silyliumylidene cation. Its further reaction with fluorobenzene afforded the CAr−H bond activation product [1-F-2-IMe-C6H4]+I ( 3 ). The isolation of 2 and 3 confirmed the reaction mechanism for the formation of 1 . Compounds 1 – 3 were analyzed by EPR and NMR spectroscopy, DFT calculations, and X-ray crystallography.  相似文献   

5.
The trapping of a silicon(I) radical with N‐heterocyclic carbenes is described. The reaction of the cyclic (alkyl)(amino) carbene [cAACMe] (cAACMe=:C(CMe2)2(CH2)NAr, Ar=2,6‐i Pr2C6H3) with H2SiI2 in a 3:1 molar ratio in DME afforded a mixture of the separated ion pair [(cAACMe)2Si:.]+I ( 1 ), which features a cationic cAAC–silicon(I) radical, and [cAACMe−H]+I. In addition, the reaction of the NHC–iodosilicon(I) dimer [IAr(I)Si:]2 (IAr=:C{N(Ar)CH}2) with 4 equiv of IMe (:C{N(Me)CMe}2), which proceeded through the formation of a silicon(I) radical intermediate, afforded [(IMe)2SiH]+I ( 2 ) comprising the first NHC–parent‐silyliumylidene cation. Its further reaction with fluorobenzene afforded the CAr−H bond activation product [1‐F‐2‐IMe‐C6H4]+I ( 3 ). The isolation of 2 and 3 confirmed the reaction mechanism for the formation of 1 . Compounds 1 – 3 were analyzed by EPR and NMR spectroscopy, DFT calculations, and X‐ray crystallography.  相似文献   

6.
The reduction of iodine by hydroxylamine within the [H+] range 3×10−1–3×10−4 mol.L−1 was first studied until completion of the reaction. In most cases, the concentration of iodine decreased monotonically. However, within a narrow range of reagent concentrations ([NH3OH+]0/[I2]0 ratio below 15, [H+] around 0.1 mol.L−1, and ionic strength around 0.1 mol.L−1), the [I2] and [I3] vs. time curves showed 2 and 3 extrema, respectively. This peculiar phenomenon is discussed using a 4 reaction scheme (I2+I⇔︁I3, 2 I2+NH3OH++H2O→HNO2+4 I+5 H+, NH3OH++HNO2→N2O+2 H2O+H+, and 2 HNO2+2 I+2 H+→2 NO+I2+2 H2O). In a flow reactor, sustained oscillations in redox potential were recorded with an extremely long period (around 24 h). The kinetics of the reaction was then investigated in the starting conditions. The proposed rate equation points out a reinforcement of the inhibition by hydrogen ions when [H+] is above 4×10−2 mol.L−1 at 25°C. A mechanism based on ion-transfer reactions is postulated. It involves both NH2OH and NH3OH+ as the reducing reactive species. The additional rate suppression by H+ at low pH would be connected to the existence of H2OI+ in the reactive medium. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 785–797, 1998  相似文献   

7.
Two-dimensional (2D) hybrid perovskites are recently emerging as a potential family of semiconductors for versatile optoelectronic applications. Currently, the “perovskitizer” moieties are rigidly limited to small-size cations, while few 2D metal-halides containing guanidinium cations inside perovskite cages have been studied for photodetection. Herein, we present a new 2D hybrid perovskite, (i-BA)2(G)Pb2I7 (where G is guanidinium and i-BA is isobutylammonium), which adopts a bilayered framework of {GPb2I7}. Single-crystal structure analyses disclose that G cations act as the perovskitizer, confined in the flexible perovskite cages formed by the distorted PbI6 octahedra. Such inorganic sheets are crucial to the superior semiconducting properties and optical bandgap, as verified by the density functional theory calculation. Furthermore, its planar crystal-array photodetector shows fascinating photoelectric performance, including a quite low dark current (∼4.6×10−11 A), a large current switching ratio (∼1.0×103), and a notable photo-responsivity of ∼0.72 A W−1, suggesting great potential of (i-BA)2(G)Pb2I7 for photodetection.  相似文献   

8.
《化学:亚洲杂志》2017,12(2):203-207
Reaction of triazolium precursors [MIC(CH2)n ‐ H+]I (n =1–3) with potassium hexamethyldisilazane (KHMDS) and AuCl(SMe2) generates the gold(I) complexes of the type MIC(CH2)n ⋅AuI. Visible light exposure of the latter complexes promotes a spontaneous disproportionation process rendering gold(III) complexes of the type [{MIC(CH2)n }2⋅AuI2]+I. Both the AuI and AuIII complex series were tested in the catalytic hydrohydrazination of terminal alkynes using hydrazine as nitrogen source.  相似文献   

9.
Iodine has great potential in the energy storage, but high solubility of I3 has seriously delayed its promotion. Benefited from abundant active sites and the open channel, two-dimensional coordination supramolecular networks (2D CSNs) is considered to be a candidate for the energy storage. Herein, a 2D porphyrin-CSN cathode named Zn-TCPP for aqueous iodine dual-ion battery (DIB) shows an excellent specific capacity of 278 mAh g−1, and a high energy density of 340 Wh kg−1 at 5 A g−1, as well as a durable cycle performance of 5000 cycles and a high Coulombic efficiency of 98 %. Molecular orbital theory, UV/VIS, Raman spectroscopy and density functional theory (DFT) calculations reveal charge-transfer interaction between the donor of porphyrin nitrogen and the acceptor of I3, and computational fluid dynamics (CFD) simulations demonstrate the contribution of 2D layered network structure of Zn-TCPP to the penetration of I3.  相似文献   

10.
A series of indole- and carbazole-substituted pyridinium iodide salts has been synthesized and characterized. X-ray analysis revealed that the iodide salt of the indole-substituted cation (E)-4-(1H-indol-3-yl­vinyl)-N-methyl­pyridinium (IMPE+), C16H15N2+·I, (I), has two polymorphic modifications, (Ia) and (Ib), and a hemihydrate structure, C16H15N2+·I·0.5H2O, (II). Until now, only one crystal modi­fication has been identified for the (E)-4-(9-ethyl-9H-carbazol-3-yl­vinyl)-N-methyl­pyridinium (ECMPE+) iodide salt, C22H21N2+·I, (III). Crystals of (Ia) and (Ib) comprise stacks of antiparallel cations with iodide anions located in the channels between the stacks. Due to the presence of the water mol­ecules, the packing in (II) is quite different to that found in (Ia) and (Ib), and positional disorder involving a statistical superposition of two rotamers of IMPE+, with different orientations of the indole fragment, was found. Crystals of (III) contain two independent ECMPE+ rotamers with different orientations of their carbazole substituents. The cations are packed in stacks, with the iodide anions located in the channels between the stacks. In (III), the iodide was found to be disordered over two sites, with occupancies of 0.83 and 0.17.  相似文献   

11.
The reactions between the donors morpholine (1) and thiomorpholine (2) with I2 in low polar solvents (C6H6, CHCl3, CH2Cl2) and different donor/I2 concentration ratios (1:1, 1:2, 1:3) yield solids of stoichiometry 1·I2, 1H+I3, 1H+I5, 2·I2, and 2H+I3. Crystals suitable for X-ray structure determination have been obtained only for 1 H+I3. All the solids were characterized by FT-Raman and FT-IR spectroscopies in the region of the v(I-I) frequencies. Studies in solution have been carried out on each of the reactions between 1, 2, and N-methylmorpholine (3) with I2. The formation constants of their 1:1 adducts determined at 20°C by UV-visible spectroscopy are 1781, 8500, and 8400 dm3 mol−1, respectively. IR spectroscopy shows that I2 binds the nitrogen of 1 and 2 both in axial and equatorial positions. Further, FT-Raman and 13CNMR spectroscopies support the nature of weak adducts between 1 (2) and the molecular diiodine in solution. © 1997 John Wiley & Sons, Inc.  相似文献   

12.
An improved generator coordinate Hartree–Fock (HF) method is used to generate accurate triple‐optimized Gaussian basis sets for the cations from He+ (Z=2) through Ne+ (Z=10) and from K+ (Z=19) through Xe+ (Z=54), and for the anions from H (Z=1) through F (Z=9) and from K (Z=19) through I (Z=53). For all ions here studied, our ground‐state HF total energies are better than those calculated with the generator coordinate HF method, using optimized Gaussian basis sets of the same size. For all ions studied, the largest difference between our total energy values and the corresponding results obtained with a numerical HF method is equal to 3.434 mhartrees for Te+. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 82: 126–130, 2001  相似文献   

13.
Two‐dimensional (2D) homologous perovskites are arousing intense interest in photovoltaics and light‐emitting fields, attributing to significantly improved stability and increasing optoelectronic performance. However, investigations on 2D homologous perovskites with ultrathin thickness and large lateral dimension have been seldom reported, being mainly hindered by challenges in synthesis. A generalized self‐doping directed synthesis of ultrathin 2D homologous (BA)2(MA)n −1Pbn Br3n +1 (1<n <∞) perovskites uses 2D (BA)2PbBr4 perovskites as the template with MA+ dopant. Ultrathin (BA)2(MA)n −1Pbn Br3n +1 perovskites are formed via an intercalation–merging mechanism, with thickness shrinking down to 4.2 nm and the lateral dimension to 57 μm. The ultrathin 2D homologous (BA)2(MA)n −1Pbn Br3n +1 perovskites are potential materials for photodetectors with promising photoresponse and stability.  相似文献   

14.
Nonaqueous redox-flow batteries are an emerging energy storage technology for grid storage systems, but the development of anolytes has lagged far behind that of catholytes due to the major limitations of the redox species, which exhibit relatively low solubility and inadequate redox potentials. Herein, an aluminum-based deep-eutectic-solvent is investigated as an anolyte for redox-flow batteries. The aluminum-based deep-eutectic solvent demonstrated a significantly enhanced concentration of circa 3.2 m in the anolyte and a relatively low redox potential of 2.2 V vs. Li+/Li. The electrochemical measurements highlight that a reversible volumetric capacity of 145 Ah L−1 and an energy density of 189 Wh L−1 or 165 Wh kg−1 have been achieved when coupled with a I3/I catholyte. The prototype cell has also been extended to the use of a Br2-based catholyte, exhibiting a higher cell voltage with a theoretical energy density of over 200 Wh L−1. The synergy of highly abundant, dendrite-free, multi-electron-reaction aluminum anodes and environmentally benign deep-eutectic-solvent anolytes reveals great potential towards cost-effective, sustainable redox-flow batteries.  相似文献   

15.
The synergistic Ag+/X2 system (X=Cl, Br, I) is a very strong, but ill‐defined oxidant—more powerful than X2 or Ag+ alone. Intermediates for its action may include [Agm(X2)n]m+ complexes. Here, we report on an unexpectedly variable coordination chemistry of diiodine towards this direction: ( A )Ag‐I2‐Ag( A ), [Ag2(I2)4]2+( A )2 and [Ag2(I2)6]2+( A )2⋅(I2)x≈0.65 form by reaction of Ag( A ) ( A =Al(ORF)4; RF=C(CF3)3) with diiodine (single crystal/powder XRD, Raman spectra and quantum‐mechanical calculations). The molecular ( A )Ag‐I2‐Ag( A ) is ideally set up to act as a 2 e oxidant with stoichiometric formation of 2 AgI and 2 A . Preliminary reactivity tests proved this ( A )Ag‐I2‐Ag( A ) starting material to oxidize n‐C5H12, C3H8, CH2Cl2, P4 or S8 at room temperature. A rough estimate of its electron affinity places it amongst very strong oxidizers like MF6 (M=4d metals). This suggests that ( A )Ag‐I2‐Ag( A ) will serve as an easily in bulk accessible, well‐defined, and very potent oxidant with multiple applications.  相似文献   

16.
Inorganic–organic hybrid perovskites, especially two‐dimensional (2D) layered halide perovskites, have attracted significant attention due to their unique structures and attractive optoelectronic properties, which open up a great opportunity for next‐generation photosensitive devices. Herein, we report a new 2D bilayered inorganic–organic hybrid perovskite, (C6H13NH3)2(NH2CHNH2)Pb2I7 ( HFA , where C6H13NH3+ is hexylaminium and NH2CHNH2+ is formamidinium), which exhibits a remarkable photoresponse under broadband light illumination. Structural characterizations demonstrate that the 2D perovskite structure of HFA is constructed by alternant stacking of inorganic lead iodide bilayered sheets and organic hexylaminium layers. Optical absorbance measurements combined with density functional theory (DFT) calculations suggest that HFA is a direct band gap semiconductor with a narrow band gap (Eg) of ≈2.02 eV. Based on these findings, photodetectors based on HFA crystal wafer are fabricated, which exhibit fascinating optoelectronic properties including large on/off current ratios (over 103), fast response speeds (τrise=310 μs and τdecay=520 μs) and high responsivity (≈0.95 mA W?1). This work will contribute to the design and development of new two‐dimensional bilayer inorganic–organic hybrid perovskites for high‐performance photosensitive devices.  相似文献   

17.
An enhanced handheld pH meter based immunosensor was proposed for point-of-care, quantitative determination of prostate specific antigen (PSA). Monoclonal antibody-functionalized magnetic beads (MB-Ab1) were prepared to capture PSA in sample, and subsequently bond to polyclonal antibody-immobilized gold nanoparticles-polyamide-amine dendrite-lead ion (GO-PAMAM-Pb2+) and dispersed in H2S solution. Based on negative Gibbs free energy of formation, PbS (solubility product constant Ksp=8.0×10−28 was formed by reaction of Pb2+ and H2S. Hence, the pH of solution increased due to the H+ appeared, and the resulting pH value was monitored by a handheld pH meter.  相似文献   

18.
Li  Siwen  Yu  Hong  Ma  Yajie 《Chromatographia》2011,74(11):759-765

A method of ion-pair chromatography was developed on a reversed-phase silica-based monolithic column for the fast and simultaneous determination of trifluoromethanesulfonate (CF3SO3 ) and p-toluenesulfonate (C7H7SO3 ). The analysis was performed using a mobile phase of tetrabutylammonium hydroxide + citric acid + acetonitrile on the Chromolith Speed ROD RP-18e column with direct conductivity detection. The effects of the eluent, column temperature and flow rate on the retention of the anions were investigated. The experimental phenomenon was discussed according to hydrophobic interaction and ion-exchange mechanism in the separation. The optimized chromatographic conditions were selected. The optimized eluent for the separation consisted of 0.2 mmol L−1 tetrabutylammonium hydroxide + 0.10 mmol L−1 citric acid + 9% acetonitrile (pH 5.5). The flow rate was set at 6.0 mL min−1. The column temperature was 25 °C. Under the optimal conditions, the better separation of CF3SO3 and C7H7SO3 was achieved without any interference by other anions (Cl, Br, I, NO3 , SO4 2−, ClO3 , BF4 and PF6 ). The detection limit (S/N = 3) was 0.28 and 0.71 mg L−1 for CF3SO3 and C7H7SO3 , respectively. The method has been applied to the determination of CF3SO3 and C7H7SO3 in ionic liquids. The spiked recoveries of CF3SO3 and C7H7SO3 were 101.1 and 100.2%, respectively.

  相似文献   

19.
Crystals of 1‐(diaminomethylene)thiouron‐1‐ium chloride, C2H7N4S+·Cl, 1‐(diaminomethylene)thiouron‐1‐ium bromide, C2H7N4S+·Br, and 1‐(diaminomethylene)thiouron‐1‐ium iodide, C2H7N4S+·I, are built up from the nonplanar 1‐(diaminomethylene)thiouron‐1‐ium cation and the respective halogenide anion. The conformation of the 1‐(diaminomethylene)thiouron‐1‐ium cation in each case is twisted. Both arms of the cation are planar and rotated in opposite directions around the C—N bonds involving the central N atom. The dihedral angles describing the twisted conformation are 22.9 (1), 15.2 (1) and 4.2 (1)° in the chloride, bromide and iodide salts, respectively. Ionic and extensive hydrogen‐bonding interactions join oppositely charged units into a supramolecular network. The aim of the investigation is to study the influence of the size of the ionic radii of the Cl, Br and I ions on the dimensionality of the hydrogen‐bonding network of the 1‐(diaminomethylene)thiouron‐1‐ium cation. The 1‐(diaminomethylene)thiouron‐1‐ium system should be of use in crystal engineering to form multidimensional networks.  相似文献   

20.
A novel AuICoIII coordination system that is derived from the newly prepared [Co(D ‐nmp)2] ( 1 ; D ‐nmp=N‐methyl‐D ‐penicillaminate) and a gold(I) precursor AuI is reported. Complex 1 acts as a sulfur‐donating metallaligand and reacts with the gold(I) precursor to give [Au2Co2(D ‐nmp)4] ( 2 ), which has an eight‐membered AuI2CoIII2 metallaring. Treatment of 2 with [Au2(dppe)2]2+ (dppe=1,2‐bis(diphenylphosphino)ethane) leads to the formation of [Au4Co2(dppe)2(D ‐nmp)4]2+ ( 3 2+), which consists of an 18‐membered AuI4CoIII2 metallaring that accommodates a tetrahedral anion (BF4, ClO4, ReO4). In solution, the metallaring structure of 3 2+ is readily interconvertible with the nine‐membered AuI2CoIII metallaring structure of [Au2Co(dppe)(D ‐nmp)2]+ ( 4 +); this process depends on external factors, such as solvent, concentration, and nature of the counteranion. These results reveal the lability of the Au S and Au P bonds, which is essential for metallaring expansion and contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号