首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selective conversion of fructose to 5-hydroxymethyl-furfural (HMF) involves the participation of high-boiling solvents like dimethyl sulfoxide (DMSO). In order to replace DMSO with low-boiling solvents, it is imperative that we understand the effect of DMSO solvation in protecting (i) HMF from rehydration and humins formation reactions and (ii) fructose from side reactions, other than its dehydration to HMF. In the present work, molecular dynamics simulations of HMF and fructose in water and in water-DMSO mixtures are carried out using the OPLS-AA force field. Radial pair distribution functions, coordination numbers and the hydrogen-bond network between the HMF/fructose molecule and the solvent molecules are analysed. The local 3-dimensional picture of the arrangement of solvent molecules around the solute, which cannot be accessed from pair distribution functions, is also computed. We show preferential coordination of DMSO around HMF and explain how this could provide a shielding effect to the HMF molecule, thus protecting it from further rehydration to levulinic acid and formic acid and from humins formation. In the case of fructose, the presence of DMSO also reduces the number of water molecules in the immediate vicinity of fructose. Though fewer water molecules coordinate around fructose, they are bound strongly to it. Analysis of the local 3-dimensional arrangement of DMSO molecules suggests that it protects the fructose molecule from side reactions that would lead to condensation or reversion products. However, the presence of DMSO molecules does not hamper the water molecules coming into contact with the oxygen atom of the hydroxyl groups of fructose, which is required for a proton transfer from water to fructose, to initiate the dehydration reaction to HMF.  相似文献   

2.
《Arabian Journal of Chemistry》2020,13(10):7430-7444
Fructose was converted to 5-hydroxymethylfurfural (HMF), an important biomass-derived platform chemical, under mild conditions (100–130 °C) with several organic acids including p-toluene sulfonic (pTSA), oxalic, maleic, malonic and succinic acids as the catalysts. The process kinetics was compared considering fructose dehydration to HMF as the objective reaction and condensation of fructose and HMF to humin and rehydration of HMF as the main side reactions. DMSO was found to be the most effective solvent reaction medium to obtain high fructose conversion and HMF yield. Observed kinetic modeling illustrated that the rehydration and condensation of HMF in DMSO actually could be neglected, especially for the oxalic acid catalyzed system. The determined observed activation energy for fructose conversion to HMF and humin in DMSO medium was 33.75 and 24.94 kJ/mol for pTSA catalyzed system, and 96.51 and 78.39 kJ/mol for oxalic acid-catalyzed system, respectively. HMF yields of 90.2% and 84.1% were obtained for pTSA and oxalic acid catalyzed systems, respectively.  相似文献   

3.
5-羟甲基糠醛(HMF)是一种具有重要应用价值的原材料和中间体,以果糖脱水合成HMF具有实现生物质转化利用的重大意义。本文综述了近三年来果糖制备HMF过程的两大关键因素:催化剂和反应介质的重要进展。固体酸(特别是杂多酸及其盐)、离子液体(ILs)中添加卤化物或ILs作为催化剂是近几年来研究的热点,固体酸的优点是可多次重复使用且易于分离,而ILs中果糖的降解条件较温和,副反应较少。目前,用于果糖转化HMF的反应溶剂优、缺点并存。最后对该反应存在的问题和今后的研究进行了总结和展望。  相似文献   

4.
利用拉曼光谱研究了不同温度和浓度MnCl2/DMSO溶液体系离子的溶剂化作用, 结果表明, 在0~0.8 mol/L浓度范围内, 随着浓度增加, Mn2+与DMSO的相互作用逐渐增强, S=O伸缩振动峰向低波数移动, S=O双键减弱; C—S伸缩振动峰向高波数移动, C—S键增强. 温度升高, S=O双键和C—S键伸缩振动峰均向相反的方向移动, 溶剂化作用减弱. 56 ℃以上, 单体DMSO迅速增加, 与Mn2+溶剂化作用的DMSO迅速减少, 二聚体DMSO减少缓慢, 温度对溶剂化作用的影响大于溶剂自身的缔合. 利用密度泛函理论对可能存在的溶剂化构型[Mn(DMSO)n]2+进行了优化、 热力学性质及理论拉曼光谱计算, 从理论上证实了Mn2+与DMSO存在相互作用, 导致DMSO的S=O键拉伸和C—S键收缩, 与实验光谱结果一致.  相似文献   

5.
The solvation of the lithium and sodium ions in dimethyl sulfoxide solution was theoretically investigated using ab initio calculations coupled with the hybrid cluster-continuum model, a quasichemical theory of solvation. We have investigated clusters of ions with up to five dimethyl sulfoxide (DMSO) molecules, and the bulk solvent was described by a dielectric continuum model. Our results show that the lithium and sodium ions have four and five DMSO molecules into the first coordination shell, and the calculated solvation free energies are -135.5 and -108.6 kcal mol(-1), respectively. These data suggest a solvation free energy value of -273.2 kcal mol(-1) for the proton in dimethyl sulfoxide solution, a value that is more negative than the present uncertain experimental value. This and previous studies on the solvation of ions in water solution indicate that the tetraphenylarsonium tetraphenylborate assumption is flawed and the absolute value of the free energy of transfer of ions from water to DMSO solution is higher than the present experimental values.  相似文献   

6.
Molecular dynamics simulations of dilute and concentrated aqueous NaCl solutions are carried out to investigate the changes of the hydrogen bonded structures in the vicinity of ions for different ion concentrations. An analysis of the hydrogen bond population in the first and second solvation shells of the ions and in the bulk water is done. Although essentially no effect of ions on the hydrogen bonding is observed beyond the first solvation shell of the ions for the dilute solutions, for the concentrated solutions a noticeable change in the average number of water-water hydrogen bonds is observed in the second solvation shells of the ions and even beyond. However, the changes in the average number of hydrogen bonds are found to be relatively less when both water-water and ion-water hydrogen bonds are counted. Thus, the changes in the total number of hydrogen bonds per water are not very dramatic beyond the first solvation shell even for concentrated solutions.  相似文献   

7.
Sulfonated carbon dots (SCDs) were synthesized from plant leaves via continuously hydrothermal treatment by hydrogen peroxide and sulfuric acid, used as catalyst for converting fructose to 5-hydroxymethylfurfural (HMF). Owing to nanosize effect and moderate acidic intensity, SCDs could thoroughly distribute in the solvent with an improved interfacial compatibility and selectively convert fructose to HMF. Under the optimal condition, the yield of HMF was 92.6% along with a fructose conversion of 100%, benefiting from a low activation energy of 52.9 kJ/mol when dimethylsulfoxide was used as solvent. The SCDs catalyst can be recovered, after six recycles, the fructose conversion and HMF yield were remained 66.1% and 56.2% under condition with incompletely conversion of fructose, respectively. This work provides a sustainable route to prepare carbon dots with a superior catalytic performance for converting biomass to important biobased platform chemicals.  相似文献   

8.
The stability of complexes and enthalpy of interaction of Ag+ ions with 18-crown-6 in waterdimethyl sulfoxide (DMSO) mixtures were determined by calorimetric titration in the range of mole fractions XDMSO from 0.0 to 0.97 at 298.15 K. With increasing concentration of the nonaqueous component in the solvent to XDMSO 0.3, the stability of the complex ion [AgL]+ increases, which is followed by a decrease in logK(AgL+) to 0.35 plusmn 0.15 at XDMSO 0.97. The exothermic effect of the reaction shows a similar trend. The presence of the extremum in the logK-XDMSO and r H-XDMSO dependences is explained by the competition of two solvation contributions: destabilization of the ligand with decreasing water content in the solvent and formation of strong solvation complexes of Ag+ with DMSO.  相似文献   

9.
We utilized X-ray absorption spectroscopy (XAS) and X-ray Raman scattering (XRS) in order to study the ion solvation effect on the bulk hydrogen bonding structure of water. The fine structures in the X-ray absorption spectra are sensitive to the local environment of the probed water molecule related to the hydrogen bond length and angles. By varying the concentration of ions, we can distinguish between contributions from water in the bulk and in the first solvation sphere. We show that the hydrogen bond network in bulk water, in terms of forming and breaking hydrogen bonds as detected by XAS/XRS, remains unchanged, and only the water molecules in the close vicinity to the ions are affected.  相似文献   

10.
The solvation of the enzyme Candida antarctica lipase B (CAL-B) was studied in eight different ionic liquids (ILs). The influence of enzyme-ion interactions on the solvation of CAL-B and the structure of the enzyme-IL interface are analyzed. CAL-B and ILs are described with molecular dynamics (MD) simulations in combination with an atomistic empirical force field. The considered cations are based on imidazolium or guanidinium that are paired with nitrate, tetrafluoroborate or hexafluorophosphate anions. The interactions of CAL-B with ILs are dominated by Coulomb interactions with anions, while the second largest contribution stems from van der Waals interactions with cations. The enzyme-ion interaction strength is determined by the ion size and the magnitude of the ion surface charge. The solvation of CAL-B in ILs is unfavorable compared to water because of large formation energies for the CAL-B solute cages in ILs. The internal energy in the IL and of CAL-B increases linearly with the enzyme-ion interaction strength. The average electrostatic potential on the surface of CAL-B is larger in ILs than in water, due to a weaker screening of charged enzyme residues. Ion densities increased moderately in the vicinity of charged residues and decreased close to non-polar residues. An aggregation of long alkyl chains close to non-polar regions and the active site entrance of CAL-B are observed in one IL that involved long non-polar decyl groups. In ILs that contain 1-butyl-3-methylimidazolium cations, the diffusion of one or two cations into the active site of CAL-B occurs during MD simulations. This suggests a possible obstruction of the active site in these ILs. Overall, the results indicate that small ions lead to a stronger electrostatic screening within the solvent and stronger interactions with the enzyme. Also a large ion surface charge, when more hydrophilic ions are used, increases enzyme-IL interactions. An increase of these interactions destabilizes the enzyme and impedes enzyme solvation due to an increase in solute cage formation energies.  相似文献   

11.
We performed molecular simulations to analyze the thermodynamics of methane solvation in dimethyl sulfoxide (DMSO)/water mixtures (298 K, 1 atm). Two contributions to the interaction thermodynamics are studied separately: (i) the introduction of solute-solvent interactions (primary contribution) and (ii) the solute-induced disruption of cohesive solvent-solvent interactions (secondary contribution). The energy and entropy changes of the secondary contribution always exactly cancel in the free energy (energy-entropy compensation), hence only the primary contribution is important for understanding changes of the free energy. We analyze the physical significance of the solute-solvent energy and solute-solvent entropy associated with the primary contribution and discuss how to obtain these quantities from experiments combining solvation thermodynamic and solvent equation of state data. We show that the secondary contribution dominates changes in the methane solvation entropy and enthalpy: below 30 mol % DMSO in the mixture, methane, because of more favorable dispersion interactions with DMSO molecules, preferentially attracts DMSO molecules, which, in response, release water molecules into the bulk, causing an increase in the entropy. This large energy-entropy compensating process easily causes a confusion in the cause for and the effect of preferred methane-DMSO interactions. Methane-DMSO dispersion interactions are the cause, and the entropy change is the effect. Procedures that infer thermodynamic driving forces from analyses of the solvation entropies and enthalpies should therefore be used with caution.  相似文献   

12.
Vertical excitation and electron detachment energies associated with the optical absorption of iodide ions dissolved in supercritical ammonia at 420 K have been calculated in two limiting scenarios: as a solvated free I- ion and forming a K+I- contact ion pair (CIP). The evolution of the transition energies as a result of the gradual building up of the solvation structure was studied for each absorbing species as the solvent's density increased, i.e., changing the NH3 supercritical thermodynamic state. In both cases, if the solvent density is sufficiently high, photon absorption produces a spatially extended electron charge beyond the volume occupied by the solvated solute core; this excited state resembles a typical charge-transfer-to-solvent (CTTS) state. A combination of classical molecular dynamics simulations followed by quantum mechanical calculations for the ground, first-excited, and electron-detached electronic states have been carried out for the system consisting of one donor species (free I- ion or K+I- CIP) surrounded by ammonia molecules. Vertical excitation and electron detachment energies were obtained by averaging 100 randomly chosen microconfigurations along the molecular dynamics trajectory computed for each thermodynamic condition (fluid density). Short- and long-range contributions of the solvent-donor interaction upon the CTTS states of I- and K+I- were identified by performing additional electronic structure calculations where only the solvent interaction due to the first neighbor molecules was taken into account. These computations, together with previous experimental evidence that we collected for the system, have been used to analyze the solvent effects on the CTTS transition. In this paper we have established the following: (i) the CTTS electron of free I- ion or K+I- CIP presents similar features, and it gradually localizes in close proximity of the iodine parent atom when the ammonia density is increased; (ii) for the free I- ion, the short-range solvent interaction contributes to the stabilization of the ground state more than it does for the CTTS excited state, which is evidenced experimentally as a blueshift in the maximum absorption of the CTTS transition when the density is increased; (iii) this effect is less noticeable for the K+I- ion pair, because in this case a tight solvation structure, formed by four NH3 molecules wedged between the ions, appears at very low density and is very little affected by changes in the density; (iv) the long-range contribution to the solvent stabilization can be neglected for the K+I- CIP, since the main features of its electronic transition can be explained on the basis of the vicinity of the cation; (v) however, the long-range solvent field contribution is essential for the free I- ion to become an efficient CTTS donor upon photoexcitation, and this establishes a difference in the CTTS behavior of I- in bulk and in clusters.  相似文献   

13.
Titration Raman spectroscopy has been developed for studying the solvation structure of metal ions in solution. The method affords us the solvation number, and the value thus obtained in neat solvents is in good agreement with that determined by EXAFS. The method is then applied to solvent mixtures, and the individual solvation number for each solvent is extracted. In a solvent mixture of N,N-dimethylformamide (DMF) and N,N,N',N'-tetramethylurea (TMU), the metal ion prefers DMF to TMU, which is ascribed to the solvation steric effect. The same applies also for the solvent mixture of N,N-dimethylpropionamide (DMPA) and DMF. However, unlike TMU, DMPA changes its conformation from the planar cis to non-planar staggered upon solvation to the metal ion. The enthalpy for the conformational change of DMPA is positive in the bulk, while it is significantly negative in the coordination sphere of the manganese(II) ion. Here, we briefly describe the procedure of measurements and analyses for the titration Raman spectroscopy, and review the solvation structure of the alkaline earth, first transition metal(II) and lanthanide(III) ions in some solvent mixtures in view of solvation steric effect.  相似文献   

14.
The solvation properties of the Zn(2+) ion in methanol solution have been investigated using a combined approach based on molecular dynamics (MD) simulations and extended X-ray absorption fine structure (EXAFS) experimental results. The quantum mechanical potential energy surface for the interaction of the Zn(2+) ion with a methanol molecule has been calculated taking into account the effect of bulk solvent by the polarizable continuum model (PCM). The effective Zn-methanol interactions have been fitted by suitable analytical potentials, and have been utilized in the MD simulation to obtain the structural properties of the solution. The reliability of the whole procedure has been assessed by comparing the theoretical structural results with the EXAFS experimental data. The structural parameters of the first solvation shells issuing from the MD simulations provide an effective complement to the EXAFS experiments.  相似文献   

15.
Gauss's law or Poisson's equation is conventionally used to calculate solvation free energy. However, the near‐solute dielectric polarization from Gauss's law or Poisson's equation differs from that obtained from molecular dynamics (MD) simulations. To mimic the near‐solute dielectric polarization from MD simulations, the first‐shell water was treated as two layers of surface charges, the densities of which are proportional to the electric field at the solvent molecule that is modeled as a hard sphere. The intermediate water was treated as a bulk solvent. An equation describing the solvation free energy of ions using this solvent scheme was derived using the TIP3P water model. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Triflic acid is a functional group of perflourosulfonated polymer electrolyte membranes where the sulfonate group is responsible for proton conduction. However, even at extremely low hydration, triflic acid exists as a triflate ion. In this work, we have developed a force-field for triflic acid and triflate ion by deriving force-field parameters using ab initio calculations and incorporated these parameters with the Optimized Potentials for Liquid Simulations - All Atom (OPLS-AA) force-field. We have employed classical molecular dynamics (MD) simulations with the developed force field to characterize structural and dynamical properties of triflic acid (270-450 K) and triflate ion/water mixtures (300 K). The radial distribution functions (RDFs) show the hydrophobic nature of CF(3) group and presence of strong hydrogen bonding in triflic acid and temperature has an insignificant effect. Results from our MD simulations show that the diffusion of triflic acid increases with temperature. The RDFs from triflate ion/water mixtures shows that increasing hydration causes water molecules to orient around the SO(3)(-) group of triflate ions, solvate the hydronium ions, and other water molecules. The diffusion of triflate ions, hydronium ion, and water molecules shows an increase with hydration. At λ = 1, the diffusion of triflate ion is 30 times lower than the diffusion of triflic acid due to the formation of stable triflate ion-hydronium ion complex. With increasing hydration, water molecules break the stability of triflate ion-hydronium ion complex leading to enhanced diffusion. The RDFs and diffusion coefficients of triflate ions, hydronium ions and water molecules resemble qualitatively the previous findings using per-fluorosulfonated membranes.  相似文献   

17.
Sulfonic acid-functionalized heterogeneous catalysts have been evaluated in the catalytic dehydration of C(,monosaccharides into 5-hydroxymethylfurfural(HMF) using dimethyl sulfoxide(DMSO)as solvent.Sulfonic commercial resin Amberlyst-70 was the most active catalyst,which was ascribed to its higher concentration of sulfonic acid sites as compared with the other catalysts,and it gave 93 mol%yield of HMF from fructose in 1 h.With glucose as the starting material,which is a much more difficult reaction,the reaction conditions(time,temperature,and catalyst loading) were optimized for Amberlyst-70 by a response surface methodology,which gave a maximum HMF yield of 33 mol%at 147 °C with 23 wt%catalyst loading based on glucose and 24 h reaction time.DMSO promotes the dehydration of glucose into anhydroglucose,which acts as a reservoir of the substrate to facilitate the production of HMF by reducing side reactions.Catalyst reuse without a regeneration treatment showed a gradual but not very significant decay in catalytic activity.  相似文献   

18.
A new method for the synthesis of 5-hydroxymethylfurfural (HMF) with high yields in dimethyl sulfoxide (DMSO) is presented. By using constant-current electrolysis more than 90% of sucrose or fructose was converted to HMF at room temperature in DMSO in the presence of traces of water.  相似文献   

19.
Molecular-dynamics simulations of Cl(-) and Na(+) ions are performed to calculate ionic solvation free energies in both bulk simple point-charge/extended water and ice 1 h at several different temperatures, and at the basal ice 1 h/water interface. For the interface we calculate the free energy of "transfer" of the ions across the ice/water interface. For the ions in bulk water in the NPT ensemble at 298 K and 1 atm, results are found to be in good agreement with experiments, and with other simulation results. Simulations performed in the NVT ensemble are shown to give equivalent solvation free energies, and this ensemble is used for the interfacial simulations. Solvation free energies of Cl(-) and Na(+) ions in ice at 150 K are found to be approximately 30 and approximately 20 kcal mol(-1), respectively, less favorable than for water at room temperature. Near the melting point of the model the solvation of the ions in water is the same (within statistical error) as that measured at room temperature, and in the ice is equivalent and approximately 10 kcal mol(-1) less favorable than the liquid. The free energy of transfer for each ion across ice/water interface is calculated and is in good agreement with the bulk observations for the Cl(-) ion. However, for the model of Na(+) the long-range electrostatic contribution to the free energy was more negative in the ice than the liquid, in contrast with the results observed in the bulk calculations.  相似文献   

20.
A novel, magnetically recoverable carbonaceous solid acid Fe3O4@C-SO3H catalyst for the conversion of carbohydrates to 5-ethoxymethylfurfural (EMF) was developed. The effect of the DMSO fraction in the ethanol-DMSO binary solvent on the distribution of the reaction products was investigated. The catalyst showed an excellent activity in the synthesis of EMF from fructose and 5-hydroxymethylfurfural (HMF). 5- Ethoxymethylfurfural was also obtained with a high yield of 64.2% in an ethanol–DMSO solvent system via one-step conversion of fructose. After reaction, the catalyst could be recovered by exposure of the reaction mixture to external magnetic field and reused several times without a loss of catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号