首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Divalent lanthanide complexes of Eu ( 1 ) and Yb ( 2 ) coordinated by a chelating pyridine-based bis(silylene) ligand were isolated and fully characterized. Compared to the EuII complex 1 , the YbII complex 2 presents a lower thermal stability, resulting in the activation of one SiII−N bond and formation of an YbIII complex ( 3 ), which features a unique silylene-pyridyl-amido ligand. The different thermal stability of 1 and 2 points towards reduction-induced cleavage of one SiII−N bond of the bis(silylene) ligand. Successful isolation of the corresponding redox-inert bis(silylene) CaII complex ( 5 ) was achieved at low temperature and thermal decomposition into a CaII complex ( 4 ) bearing the same silylene-pyridyl-amido ligand was identified. In this case, the thermolysis reaction proceeds through another, non-redox induced, mechanism. An alternative higher yielding route to 4 was developed through an in situ generated silylene-pyridyl-amine proligand.  相似文献   

2.
The synthesis of N‐heterocyclic carbene adducts of alkynyl lithium and magnesium is achieved, and different degrees of association are observed. Reaction of strontium amide nacnacSrN(SiMe3)2(thf) (nacnac=CH(CMe2,6‐iPr2C6H3N)2) with PhC≡CH in THF yields the dimeric alkynyl complex [nacnacSr(thf)(μ‐C≡CPh)]2 which shows an interesting coordination geometry around the metal center. The compound retains the THF molecules, unlike its lighter congener, even in hydrocarbon solvents.  相似文献   

3.
The relative lability and transmetallation aptitude of trialkylphosphine and NHC donors, integrated in semi‐rigid hybrid ligands attached to [Ag4Br4] pseudo‐cubanes, lies in favor of the NHC and is used to selectively access unprecedented NHC complexes with heterobimetallic cores, such as Ag–Cu ( 4Cy ) and Ag–Ir ( 5 t Bu ). These can be viewed as an arrested state before the full transmetallation of both donors, which gives the homodinuclear Cu ( 3Cy ) and Ir ( 6Cy ) complexes. The observed NHC transmetallation aptitude and reactivity urges caution in the common notion that views the NHC as a universal spectator.  相似文献   

4.
Transition‐metal carbene complexes have been known for about 50 years and widely applied as reagents and catalysts in organic transformations. In contrast, the carbene chemistry of the rare‐earth metals is much less developed, but has attracted the research interest in the recent years. In this field rare‐earth‐metal alkylidene, especially methylidene, compounds are an emerging class of compounds with a high synthetic potential for organometallic chemistry and maybe in the future also for organic chemistry.  相似文献   

5.
Syntheses, properties, and reactivities of nucleophilic phosphinidene complexes [LnM?P? R] are reviewed. Emphasis is placed on the electronic tuning of this emerging class of phosphorus reagents, using different ancillary ligands and coordinatively unsaturated transition‐metal moieties. The difference in applicability of the established stable 18‐electron and transient 16‐electron phosphinidenes is addressed.  相似文献   

6.
7.
Heteroleptic silylamido complexes of the heavier alkaline earth elements calcium and strontium containing the highly fluorinated 3‐phenyl hydrotris(indazolyl)borate {F12‐Tp4Bo, 3Ph}? ligand have been synthesized by using salt metathesis reactions. The homoleptic precursors [Ae{N(SiMe3)2}2] (Ae=Ca, Sr) were treated with [Tl(F12‐Tp4Bo, 3Ph)] in pentane to form the corresponding heteroleptic complexes [(F12‐Tp4Bo, 3Ph)Ae{N(SiMe3)2}] (Ae=Ca ( 1 ); Sr ( 3 )). Compounds 1 and 3 are inert towards intermolecular redistribution. The molecular structures of 1 and 3 have been determined by using X‐ray diffraction. Compound 3 exhibits a Sr ??? MeSi agostic distortion. The synthesis of the homoleptic THF‐free compound [Ca{N(SiMe2H)2}2] ( 4 ) by transamination reaction between [Ca{N(SiMe3)2}2] and HN(SiMe2H)2 is also reported. This precursor constitutes a convenient starting material for the subsequent preparation of the THF‐free complex [(F12‐Tp4Bo, 3Ph)Ca{N(SiMe2H)2}] ( 5 ). Compound 5 is stabilized in the solid state by a Ca???β‐Si?H agostic interaction. Complexes 1 and 3 have been used as precatalysts for the intramolecular hydroamination of 2,2‐dimethylpent‐4‐en‐1‐amine. Compound 1 is highly active, converting completely 200 equivalents of aminoalkene in 16 min with 0.50 mol % catalyst loading at 25 °C.  相似文献   

8.
The first example of intermolecular hydrophosphination of styrene, 2-vinylpyridine and phenylacetylene with PH3 catalyzed by bis-(amido) complexes [(Me3Si)2N]2M(NHC)2 (M=Ca, Yb, Sm) coordinated by NHC ligands is described. The reactions of styrene with PH3 proceed under mild conditions in quantitative yields to afford only anti-Markovnikov product and allow for the chemoselective synthesis of primary, secondary and tertiary phosphines. Addition of phenylacetylene to PH3 regardless the initial molar substrates ratio results in the exclusive formation of a tertiary tris-(Z-styryl)-phosphine. Crucial effect of the Lewis base coordinated to the metal ion in precatalyst on catalytic activity in styrene hydrophosphination with PH3 was demonstrated. Free NHCs were also found to be able to promote addition of PH3 to styrene, however they provide much lower reaction rates compared to the metal complexes.  相似文献   

9.
Cu and Ag precursors that are volatile, reactive, and thermally stable are currently of high interest for their application in atomic-layer deposition (ALD) of thin metal films. In pursuit of new precursors for coinage metals, namely Cu and Ag, a series of new N-heterocyclic carbene (NHC)-based CuI and AgI complexes were synthesized. Modifications in the substitution pattern of diketonate-based anionic backbones led to five monomeric Cu complexes and four closely related Ag complexes with the general formula [M(tBuNHC)(R)] (M=Cu, Ag; tBuNHC=1,3-di-tert-butyl-imidazolin-2-ylidene; R=diketonate). Thermal analysis indicated that most of the Cu complexes are thermally stable and volatile compared to the more fragile Ag analogs. One of the promising Cu precursors was evaluated for the ALD of nanoparticulate Cu metal deposits by using hydroquinone as the reducing agent at appreciably low deposition temperatures (145–160 °C). This study highlights the considerable impact of the employed ligand sphere on the structural and thermal properties of metal complexes that are relevant for vapor-phase processing of thin films.  相似文献   

10.
For a long time d10‐ML2 fragments have been known for their potential to activate unreactive bonds by oxidative addition. In the development of more active species, two approaches have proven successful: the use of strong σ‐donating ligands leading to electron‐rich metal centers and the employment of chelating ligands resulting in a bent coordination geometry. Combining these two strategies, we synthesized bis‐NHC chelate complexes of nickel(0) and platinum(0). Bis(1,5‐cyclooctadiene)nickel(0) and ‐platinum(0) react with bisimidazolium salts, deprotonated in situ at room temperature, to yield tetrahedral or trigonal‐planar bis‐NHC chelate olefin complexes. The synthesis and characterization of these complexes as well as a first example of C? C bond activation with these systems are reported. Due to the enforced cis arrangement of two NHCs, these compounds should open interesting perspectives for bond‐activation chemistry and catalysis.  相似文献   

11.
A new family in town! Treatment of a rare‐earth metal (Ln) and either a potential divalent rare‐earth metal (Ln′) or an alkaline earth metal (Ae) with 2,6‐diphenylphenol (HOdpp) at elevated temperatures (200–250 °C) afforded heterobimetallic aryloxo complexes (see figure). Both a charge‐separated species, [(Ln′/Ae)2(Odpp)3][Ln(Odpp)4], and a neutral species, [AeEu(Odpp)4], were obtained and crystallographically characterised.

  相似文献   


12.
Understanding the role of metal ions in biology can lead to the development of new catalysts for several industrially important transformations. Lanthanides are the most recent group of metal ions that have been shown to be important in biology, that is, in quinone-dependent methanol dehydrogenases (MDH). Here we evaluate a literature-known pyrroloquinoline quinone (PQQ) and 1-aza-15-crown-5 based ligand platform as scaffold for Ca2+, Ba2+, La3+ and Lu3+ biomimetics of MDH and we evaluate the importance of ligand design, charge, size, counterions and base for the alcohol oxidation reaction using NMR spectroscopy. In addition, we report a new straightforward synthetic route (3 steps instead of 11 and 33 % instead of 0.6 % yield) for biomimetic ligands based on PQQ. We show that when studying biomimetics for MDH, larger metal ions and those with lower charge in this case promote the dehydrogenation reaction more effectively and that this is likely an effect of the ligand design which must be considered when studying biomimetics. To gain more information on the structures and impact of counterions of the complexes, we performed collision induced dissociation (CID) experiments and observe that the nitrates are more tightly bound than the triflates. To resolve the structure of the complexes in the gas phase we combined DFT-calculations and ion mobility measurements (IMS). Furthermore, we characterized the obtained complexes and reaction mixtures using Electron Paramagnetic Resonance (EPR) spectroscopy and show the presence of a small amount of quinone-based radical.  相似文献   

13.
The thermal decompositions of Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of saccharin were studied in static air atmosphere. All of the complexes contain four molecules of coordination water and two molecules of crystallization water. The water molecules were removed in a single stage, except from the Zn(II) complex, which exhibited two endothermic effects. The dehydration process was usually accompanied by a sharp colour change. The anhydrous complexes exhibited a phase transition and the decomposition or combustion of saccharin occurred in the second and subsequent stages. The final decomposition products were identified by XRPD as the respective metal oxides. The kinetic parameters, such as the order of reaction and energy of activation for the dehydration stage, were evaluated and the thermal stabilities of the complexes are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Towards improved kinetic stability : A detailed account of the complexation properties of the ligand 1,4‐bis(hydroxycarbonylmethyl)‐6‐[bis(hydroxycarbonylmethyl)]amino‐6‐methylperhydro‐1,4‐diazepine (AAZTA; see figure) is reported. Its Gd3+ complex shows a kinetic stability superior to that of complexes formed by higher denticity ligands and opens the way for a new reference structure for MRI contrast agents.

  相似文献   


15.
The dehydrocoupling of silanes and alcohols mediated by heavier alkaline-earth catalysts, [Ae{N(SiMe3)2}2⋅(THF)2] ( I – III ) and [Ae{CH(SiMe3)2}2⋅(THF)2], ( IV – VI ) (Ae=Ca, Sr, Ba) is described. Primary, secondary, and tertiary alcohols were coupled to phenylsilane or diphenylsilane, whereas tertiary silanes are less tolerant towards bulky substrates. Some control over reaction selectivity towards mono-, di-, or tri-substituted silylether products was achieved through alteration of reaction stoichiometry, conditions, and catalyst. The ferrocenyl silylether, FeCp(C5H4SiPh(OBn)2) ( 2 ), was prepared and fully characterized from the ferrocenylsilane, FeCp(C5H4SiPhH2) ( 1 ), and benzyl alcohol using barium catalysis. Stoichiometric experiments suggested a reaction manifold involving the formation of Ae–alkoxide and hydride species, and a series of dimeric Ae–alkoxides [(Ph3CO)Ae(μ2-OCPh3)Ae(THF)] ( 3 a – c , Ae=Ca, Sr, Ba) were isolated and fully characterized. Mechanistic experiments suggested a complex reaction mechanism involving dimeric or polynuclear active species, whose kinetics are highly dependent on variables such as the identity and concentration of the precatalyst, silane, and alcohol. Turnover frequencies increase on descending Group 2 of the periodic table, with the barium precatalyst III displaying an apparent first-order dependence in both silane and alcohol, and an optimum catalyst loading of 3 mol % Ba, above which activity decreases. With precatalyst III in THF, ferrocene-containing poly- and oligosilylethers with ferrocene pendent to- ( P1 – P4 ) or as a constituent ( P5 , P6 ) of the main polymer chain were prepared from 1 or Fe(C5H4SiPhH2)2 ( 4 ) with diols 1,4-(HOCH2)2-(C6H4) and 1,4-(CH(CH3)OH)2-(C6H4), respectively. The resultant materials were characterized by NMR spectroscopy, gel permeation chromatography (GPC) and DOSY NMR spectroscopy, with estimated molecular weights in excess of 20,000 Da for P1 and P4 . The iron centers display reversible redox behavior and thermal analysis showed P1 and P5 to be promising precursors to magnetic ceramic materials.  相似文献   

16.
The thermal behaviour of Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pd(II) complexes of uracil was studied by TG, DTG and DTA in a dynamic nitrogen atmosphere. Two processes occur in the isolated uracil complexes: dehydration and pyrolytic decomposition. In the hydrated complexes, the first stage observed was the loss of water molecules, which was followed by decomposition of the uracil. The thermal dehydration of the complexes occurred in from one to three steps. The final decomposition products were found to be the respective metal oxides, except in the cases of the Co(II) and Pd(II) complexes, which produced metallic cobalt and palladium, respectively. The order of reaction and energy of activation for the dehydration stage were evaluated.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

17.
[{N^N}M(X)(thf)n] alkyl (X=CH(SiMe3)2) and amide (X=N(SiMe3)2) complexes of alkaline earths (M=Ca, Sr, Ba) and divalent rare earths (YbII and EuII) bearing an iminoanilide ligand ({N^N}?) are presented. Remarkably, these complexes proved to be kinetically stable in solution. X‐ray diffraction studies allowed us to establish size–structure trends. Except for one case of oxidation with [{N^N}YbII{N(SiMe3)2}(thf)], all these complexes are stable under the catalytic conditions and constitute effective precatalysts for the cyclohydroamination of terminal aminoalkenes and the intermolecular hydroamination and intermolecular hydrophosphination of activated alkenes. Metals with equal sizes across alkaline earth and rare earth families display almost identical apparent catalytic activity and selectivity. Hydrocarbyl complexes are much better catalyst precursors than their amido analogues. In the case of cyclohydroamination, the apparent activity decreases with metal size: Ca>Sr>Ba, and the kinetic rate law agrees with RCHA=k[precatalyst]1[aminoalkene]1. The intermolecular hydroamination and hydrophosphination of styrene are anti‐Markovnikov regiospecific. In both cases, the apparent activity increases with the ionic radius (Ca<Sr<Ba) but the rate laws are different, and obey RHA=k[styrene]1[amine]1[precatalyst]1 and RHP=k[styrene]1[HPPh2]0[precatalyst]1, respectively. Mechanisms compatible with the rate laws and kinetic isotopic effects are proposed. [{N^N}Ba{N(SiMe3)2}(thf)2] ( 3 ) and [{N^N}Ba{CH(SiMe3)2}(thf)2] ( 10 ) are the first efficient Ba‐based precatalysts for intermolecular hydroamination and hydrophosphination, and display activity values that are above those reported so far. The potential of the precatalysts for C? N and C? P bond formation is detailed and a rare cyclohydroamination–intermolecular hydroamination “domino” sequence is presented.  相似文献   

18.
19.
20.
1,3,6,8‐Tetra‐tert‐butylcarbazol‐9‐yl and 1,8‐diaryl‐3,6‐di(tert‐butyl)carbazol‐9‐yl ligands have been utilized in the synthesis of potassium and magnesium complexes. The potassium complexes (1,3,6,8‐tBu4carb)K(THF)4 ( 1 ; carb=C12H4N), [(1,8‐Xyl2‐3,6‐tBu2carb)K(THF)]2 ( 2 ; Xyl=3,5‐Me2C6H3) and (1,8‐Mes2‐3,6‐tBu2carb)K(THF)2 ( 3 ; Mes=2,4,6‐Me3C6H2) were reacted with MgI2 to give the Hauser bases 1,3,6,8‐tBu4carbMgI(THF)2 ( 4 ) and 1,8‐Ar2‐3,6‐tBu2carbMgI(THF) (Ar=Xyl 5 , Ar=Mes 6 ). Structural investigations of the potassium and magnesium derivatives highlight significant differences in the coordination motifs, which depend on the nature of the 1‐ and 8‐substituents: 1,8‐di(tert‐butyl)‐substituted ligands gave π‐type compounds ( 1 and 4 ), in which the carbazolyl ligand acts as a multi‐hapto donor, with the metal cations positioned below the coordination plane in a half‐sandwich conformation, whereas the use of 1,8‐diaryl substituted ligands gave σ‐type complexes ( 2 and 6 ). Space‐filling diagrams and percent buried volume calculations indicated that aryl‐substituted carbazolyl ligands offer a steric cleft better suited to stabilization of low‐coordinate magnesium complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号