首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary: A methacrylate‐functionalized poly(ethylene glycol) macromonomer was copolymerized at the surface of methacrylate‐derivatized maghemite nanoparticles. After silylation of the magnetic core with methacryloxypropyltrimethoxysilane, two grafting procedures based on either a direct copolymerization reaction in water or an inverse emulsion polymerization were compared. A direct copolymerization led to low polymer surface amounts, whereas an inverse emulsion process allowed nanocomposite particles containing up to 90 wt.‐% polymer to be obtained.

TEM picture of maghemite‐PEG hybrid particles.  相似文献   


2.
Summary: A multistep synthetic procedure for preparing novel C60‐anchored two‐armed poly(tert‐butyl acrylate) was developed. First, two‐armed poly(tert‐butyl acrylate) bearing a malonate ester core with well‐controlled molecular weight was synthesized through atom transfer radical polymerization. The effective Bingel reaction between C60 and the well‐defined polymer was then carried out to yield C60‐anchored polymer. GPC, 1H NMR, and UV‐vis spectroscopy indicated that the C60‐anchored polymer was a monosubstituted and ‘closed’ 6,6‐ring‐bridged methanofullerene derivative.

Schematic of a novel C60‐anchored two‐armed polymer.  相似文献   


3.
The synthesis of a rapidly forming redox responsive poly(ferrocenylsilane)‐poly(ethylene glycol) (PFS‐PEG)‐based hydrogel is described, achieved by a thiol‐Michael addition click reaction. PFS bearing acrylate side groups (PFS‐acryl) was synthesized by side group modification of poly(ferrocenyl(3‐iodopropyl)methylsilane) (PFS‐I) and characterized by 1H NMR, 13C NMR, and FT‐IR spectroscopy. The equilibrium swelling ratio, morphology, rheology, and redox responsive properties of the PFS‐PEG‐based hydrogel are reported.

  相似文献   


4.
New multifunctional copoly(2‐oxazoline) nanoparticles were prepared for cell studies. The polymer contains double‐bond side chains as potential reaction sites for “thio”‐click reactions as well as a fluorescein label covalently bound to the polymer backbone. Using the nanoprecipitation technique, spherical nanoparticles of 200–800 nm were obtained. Confocal laser scanning microscopy measurements revealed the cellular uptake of the nanoparticles.

  相似文献   


5.
Summary: The polymerization of ε‐caprolactone (CL) in the presence of HCl · Et2O by an activated monomer mechanism was performed to synthesize diblock or triblock copolymers composed of poly(ethylene glycol) (PEG) and poly(ε‐caprolactone) (PCL). The obtained PCLs had molecular weights close to the theoretical values calculated from the CL to PEG molar ratios and exibited monomodal GPC curves. We successfully prepared PEG and PCL block copolymers by a metal‐free method.

The non‐metal catalyzed living ring‐opening polymerisation of ε‐caprolactone by PEG.  相似文献   


6.
Block copolymers were synthesized by ring‐opening polymerization of L ‐lactide or D ‐lactide in the presence of mono‐ or dihydroxyl poly(ethylene glycol), using zinc metal as catalyst. The resulting copolymers were characterized by various techniques, namely 1H NMR spectroscopy, differential scanning calorimetry (DSC), X‐ray diffractometry, and Raman spectrometry. The composition of the copolymers was designed such that they were water soluble. Bioresorbable hydrogels were prepared from aqueous solutions containing both poly(L ‐lactide)/poly(ethylene glycol) and poly(D ‐lactide)/poly(ethylene glycol) block copolymers. Rheological studies confirmed the formation of hydrogels resulting from stereocomplexation between poly(L ‐lactide) and poly(D ‐lactide) blocks.

Ring‐opening polymerization of L (D )‐lactide in the presence of dihydroxyl PEG using zinc powder as catalyst.  相似文献   


7.
Summary: Commercial hydroxy‐terminated poly(ethylene glycol) monomethacrylates (PEG‐MAs) contain poly(ethylene glycol) dimethacrylate, which leads to unfavorable gel formation on polymerization. Here, hydroxy‐terminated PEG‐MA is readily isolated using a dimethylsilyl resin chlorinated with 1,3‐dichloro‐5,5‐dimethylhydantoin. Solution polymerization of the isolated PEG‐MA by free radical routes gives a high‐molecular‐weight amphiphilic graft copolymer without cross‐linking. The resulting polymer is stable for long periods in ambient conditions with preservation of the hydroxy end groups of PEG.

Commercial hydroxy‐terminated PEG‐MA can be separated readily and completely from PEG dimethacrylate contaminant with chlorinated dimethylsilyl resin.  相似文献   


8.
A new soluble conjugated copolymer based on 2,7‐dibenzosilole and 4,7‐dithien‐2‐yl‐2,1,3‐benzothiadiazole units has been synthesized (PBSDTBT). Bulk heterojunction solar cell devices are fabricated using this material as the donor and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) as the acceptor. The power conversion efficiency is 1.6% under AM1.5 illumination. This material also shows a good VOC (0.97 V). The results are quite promising considering the relatively large bandgap (1.9 eV) of this polymer.

  相似文献   


9.
Poly(L ‐lactic acid)‐block‐poly(poly(ethylene glycol) monomethacrylate) (PLLA‐b‐PPEGMA) has been prepared by the ring‐opening polymerization of lactide with a double‐headed initiator, 2‐hydroxyethyl 2′‐methyl‐2′‐bromopropionate (HMBP), followed by atom transfer radical polymerization (ATRP) of poly(ethylene glycol) monomethacrylate (PEGMA). PLLA‐b‐PPEGMA nanoparticles with encapsulated Fe3O4 are prepared by a solvent evaporation/extraction technique, and then further functionalized with folic acid, a cancer targeting ligand. Our results show that such functionalized PLLA‐b‐PPEGMA nanoparticles have good potential as carriers for targeted drug delivery in cancer treatment.

  相似文献   


10.
Summary: A new water‐soluble cationic ammonium‐functionalized poly(p‐phenylenevinylene) (PPV‐NEtMe) was successfully synthesized and exhibited high sensitivity (Ksv = 6.9 × 107 M −1) on rubredoxin, a type of anionic iron‐sulfur (Fe‐S) proteins. Further investigation showed that the biosensitivity of the cationic conjugated polymer is strongly dependent on the nature of the buffer solution and the concentration of the conjugated polymer used in the analyses.

The schematic diagram of anionic rubredoxin detected by PPV‐NEtMe.  相似文献   


11.
Summary: Semiconducting polymers with moderate HOMO–LUMO energy gaps between 1.5 and 2.0 eV are of increasing attraction as donor components of bulk heterojunction‐type organic solar cells. The synthesis and characterization of a novel cross‐conjugated, aromatic polymer, poly(diindenonaphthalene) PDIN, with a HOMO‐LUMO gap of ca. 1.6 eV (λmax: 724 nm) in comparison to poly(indenofluorene) PIF, a previously described, structurally related polymer, is presented. The replacement of the central benzene ring of PIF by a naphthalene moiety in PDIN leads to an increase of the optical bandgap energy of ca. 0.16 eV.

Chemical structure of PIF and PDIN.  相似文献   


12.
Poly(ethylene glycol) (PEG)‐based films, nanotubes, and nanotube arrays were successfully made using layer‐by‐layer (LbL) assembly ion‐containing PEO derivatives on porous templates and planar substrates. PEG nanotubes are challenging to produce because PEG dissolves into solutions and solvents used during nanotube processing, but our techniques circumvent the issue. Nanotube dimensions were verified using microscopy and the average observed diameter was 155 nm. The PEG‐based structures showed remarkable stability in water, salt water, and sodium hydroxide solution.

  相似文献   


13.
Carbon black (CB) nanoparticles were encapsulated by poly(vinyl alcohol) (PVA) by a simple method of coacervation. Transmission electron microscopy (TEM) images clearly demonstrated that the successful encapsulation of PVA happened at the surfaces of CB nanoparticles. The particle‐size distribution measurements indicated that the diameters of the obtained PVA‐encapsulated CB (CB@PVA) nanoparticles were distributed within the nanoscale dimension. This strategy avoids the complicated polymerization process involved in the counterpart of polymer‐coating approaches.

A TEM image of PVA‐encapsulated carbon black.  相似文献   


14.
2‐Oxazolines (2‐OZO) are 5‐membered cyclic imino ethers whose cationic ring‐opening polymerization (CROP) mechanism and resulting polymer properties are extensively studied. However, also 6‐ and 7‐membered cyclic imino ethers can be polymerized via CROP. Together with the much less studied 4‐ and 5‐substituted main‐chain chiral poly(2‐oxazoline)s (P‐2‐OZO), these compounds are interesting monomers to enhance the versatility of (co)poly(cyclic imino ether)s. To emphasize the potential of such alternative cyclic imino ether monomers, we provide an overview on the polymerizations of 2‐oxazine (2‐OZI) and chiral 4‐ and 5‐substituted 2‐OZO as well as of selected properties of the resulting polymers. In addition, the hydrolysis of these polymers into the corresponding poly(alkylene imine)s will be addressed.

  相似文献   


15.
Plasma Enhanced Chemical Vapor Deposition (PECVD) of poly‐2‐hydroxyethyl methacrylate (pHEMA) biocompatible, biodegradable polymer films were produced alone and cross‐linked with ethylene glycol diacrylate (EGDA). Degree of cross‐linking was controlled via manipulation of the EGDA flow rate, which influenced the amount of swelling and the extent of degradation of the films in an aqueous solution over time. Noncross‐linked pHEMA films swelled 10% more than cross‐linked films after 24 h of incubation in an aqueous environment. Increasing degree of film cross‐linking decreased degradation over time. Thus, PECVD pHEMA films with variable cross‐linking properties enable tuning of gel formation and degradation properties, making these films useful in a variety of biologically significant applications.

  相似文献   


16.
Summary: Poly(vinyl alcohol) (PVA) was derivatized by polymer analogous reaction with thienyl acryloyl chloride and processed to submicrometer fibers by electrospinning from aqueous solution. Water solubility of otherwise water‐soluble PVA fibers was reduced considerably by UV crosslinking of thienyl acrylate modified PVA fibers in the solid state. Water stability of these crosslinked fibers was proven by water steam test at 95 °C.

UV/Vis spectrum of PVA‐Thio fibers irradiated for different periods at 300 nm.  相似文献   


17.
This paper aims to report the fabrication of biodegradable thin films with micro‐domains of cylindrical nanochannels through the solvent‐induced microphase separation of poly(L ‐lactide)‐block‐poly(ethylene glycol)‐block‐poly(L ‐lactide) (PLA‐b‐PEG‐b‐PLA) triblock copolymers with different block ratios. In our experimental scope, an increase in each of the block lengths of the PLA and PEG blocks led to both a variation in the average number density (146 to 32 per 100 µm2) and the size of the micro‐domains (140 to 427 nm). Analyses by atomic force microscopy (AFM) and fluorescence microscopy indicated that the hydrophilic PEG nanochannels were dispersed in the PLA matrix of the PLA‐b‐PEG‐b‐PLA films. We demonstrated that the micro‐domain morphology could be controlled not only by the block length of PEG, but also by the solvent evaporation conditions.

  相似文献   


18.
New amphiphilic graft copolymers that have a poly(ε‐caprolactone) (PCL) biodegradable hydrophobic backbone and poly(4‐vinylpyridine) (P4VP) or poly(2‐(N,N‐dimethylamino)ethyl methacrylate) (PDMAEMA) hydrophilic side chains have been prepared by anionic polymerization of the corresponding 4VP and DMAEMA monomers using a PCL‐based macropolycarbanion as initiator. The water solubility of these amphiphilic copolymers is improved by quaternization, which leads to fully water‐soluble cationic copolymers that give micellar aggregates in deionized water with diameters ranging from 65 to 125 nm. In addition, to improve the hydrophilicity of PCL‐g‐P4VP, grafting of poly(ethylene glycol) (PEG) segments has been carried out to give a water‐soluble double grafted PCL‐g‐(P4VP;PEG) terpolymer.

  相似文献   


19.
Using molecular dynamics simulations with an OPLS force field, the lower critical solution temperature (LCST) of single‐ and multiple‐chain PNIPAM solutions in water is investigated. The sample containing ten polymer chains shows a sudden drop in size and volume at 305 K. Such an effect is absent in the single‐chain system. Large fluctuations of the physical properties of a short single‐chain prevent any clear detection of the LCST for the chosen model system, at least on the time scale of 200 ns. The results provide evidence that a critical number of PNIPAM monomer units must be present in the simulated system before MD simulations are capable to detect conformational changes unambiguously.

  相似文献   


20.
A facile approach to polymer nanocomposites with single‐wall carbon nanotubes and cationic polymers is reported. The composite material was synthesized by producing carboxylic acid groups at the nanotube termini followed by a reaction with poly(allylamine) in water. Fourier transform infrared spectral and thermogravimetric analyses corroborate that the poly(allylamine) chains were wrapped on the surface of the carbon nanotubes. The scanning electron microscopic (SEM) image shows that the nanotubes were dispersed with little aggregation, thus, strongly suggesting that the poly(allylamine) chains have covered the single‐wall carbon nanotubes, which was further evidenced by transmission electron microscopy. The composites are soluble in water, and this solubilization process opens up new opportunities in the solution chemistry on pristine nanotubes.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号