首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The collective charge density excitations in asymmetric double-quantum-well (DQW) structures with different tunneling strengths are systematically studied. In particular, the damping properties of the plasmon modes in various tunneling strengths are investigated in detail. It is shown that plasmon modes in asymmetric DQW structures are quite different from those in symmetric DQW systems. In weak tunneling regime, an intra-subband mode ω - with an acoustic-like dispersion relation which is damped in symmetric DQW structures arises and coexists with the optical-like mode ω + while the inter-subband mode ω 10 is highly damped. With the tunneling strength being increased, the ω 10 branch gradually becomes undamped and emerges out of the (1-0) single-particle continuum, whereas the ω - branch gradually approaches the (0-0) single-particle continuum. In intermediate coupling regime, these three branches of modes coexist undamped. In strong tunneling regime, ω - enters the (0-0) single-particle continuum and becomes damped. Consequently, only the ω + and ω 10 modes exist in this regime. Received 10 July 2001 and Received in final form 17 September 2001  相似文献   

2.
We have measured the storage instabilities of electrons in a Penning trap at low magnetic fields. These measurements are carried out as a function of the trapping voltage, for different magnetic fields. It is seen that these instabilities occur at the same positions when the trapping voltage is expressed as a percentage of the maximum voltage, given by the stability limit. The characteristic frequencies at which these instabilities occur, obey a relation that is given by n zω z + n +ω + + n -ω - = 0, where ω z, ω + and ω - are the axial, perturbed cyclotron and the magnetron frequencies of the trapped electrons respectively, and the n's are integers. The reason for these instabilities are attributed to higher order static perturbations in the trapping potential. Received 5 August 2002 / Received in final form 14 October 2002 Published online 17 December 2002 RID="a" ID="a"Present address: Dept. of Physics, Rampurhat College, Rampurhat, Birbhum, West Bengal, India. RID="b" ID="b"e-mail: werth@mail.uni-mainz.de  相似文献   

3.
We investigate the effects of spatial asymmetry, tunneling coupling, and exchange-correlation correction on the plasmon modes in asymmetric double quantum well (DQW) structures in a time-dependent local-density approximation. Special attention is paid to the properties of the ω - mode which is always damped in symmetric DQW systems. In addition, the results on the spectral weight of the excitations are also presented. In general, all the modes carry finite spectral weights and should be observable in resonant inelastic light scattering experiments for the specified values of the parameters. Received 2 July 2002 Published online 19 December 2002 RID="a" ID="a"e-mail: c412-1@aphy.iphy.ac.cn  相似文献   

4.
The parameters of the σ-ω-ρ model in the relativistic mean-field theory with nonlinear σ-meson self-interaction are determined by nuclear-matter properties, which are taken as those extracted by fits to data based on nonrelativistic nuclear models. The values of the relevant parameters are C σ 2∼ 94, C ω 2∼ 32, C ρ 2∼ 26, b∼ - 0.09, c∼ 1, and the σ-meson mass m σ∼ 370 MeV, while the value of the calculated nuclear- surface thickness is t∼ 1.4 fm. The field system is shown to be stable, since the σ-meson self-interaction energy is a lower bound in this whole parameter region with positive c. On the other hand, the effective nucleon mass M* is larger than 0.73M, if the symmetry incompressibility Ks is assumed to be negative and the nuclear-matter incompressibility K0 is kept less than 300 MeV. Received: 27 June 2001 / Accepted: 5 October 2001  相似文献   

5.
We propose a novel scheme for the joint generation of two squeezed beams at arbitrary frequencies ω 1 and ω 2. The scheme consists of two successive steps, both involving nonlinear interactions in χ(2) crystals. The dynamics of the setup is analyzed both quantum mechanically and classically within the parametric approximation. An experimental implementation involving the fundamental and the harmonics of a Nd:YAG laser pulse, and β-BaB 2 O 4 nonlinear crystals is suggested. Received 17 May 2000 and Received in final form 9 October 2000  相似文献   

6.
For the first time submillimetric microwaves (λ<1 mm) are used to observe Azbel' Kaner cyclotron resonance in metals. The very high frequency used (typicallyF≅400 GHz) gives a large value ofωτ (typically 500) and therefore very sharp peaks. The fundamental resonance fieldH c=m * cω/e is rather high (typically 200 KG), so subharmonicsH c/n can be observed at many values ofH in the field region 0–27 KG. If relatively few electrons participate in the resonance and ifω cτ≧50 (ω c=eH/m * c,τ relaxation time) thenChambers has shown that the line shapes are independent of relaxation time while the fractional linewidthΔH/H varies as l/ωτ. For the belly orbit in pure copper the conditions of Chambers' theory are satisfied forH≧20 KG parallel to [111] axis.m * is a minimum andτ=1.8×10−10 s.  相似文献   

7.
We consider the effect of Coulomb interactions on the average density of states (DOS) of disordered low-dimensional metals for temperatures T and frequencies ω smaller than the inverse elastic life-time 1/τ. Using the fact that long-range Coulomb interactions in two dimensions (2d) generate ln2-singularities in the DOS ν(ω) but only ln-singularities in the conductivity σ(ω), we can re-sum the most singular contributions to the average DOS via a simple gauge-transformation. If σ(ω) > 0, then a metallic Coulomb gapν(ω) ∝ |ω|/e 4 appears in the DOS at T = 0 for frequencies below a certain crossover frequency Ω 2 which depends on the value of the DC conductivity σ(0). Here, - e is the charge of the electron. Naively adopting the same procedure to calculate the DOS in quasi 1d metals, we find ν(ω) ∝ (|ω|/Ω 1)1/2exp(- Ω 1/|ω|) at T = 0, where Ω 1 is some interaction-dependent frequency scale. However, we argue that in quasi 1d the above gauge-transformation method is on less firm grounds than in 2d. We also discuss the behavior of the DOS at finite temperatures and give numerical results for the expected tunneling conductance that can be compared with experiments. Received 28 August 2001 / Received in final form 28 January 2002 Published online 9 July 2002  相似文献   

8.
9.
We develop a non-perturbative local moment approach (LMA) for the gapped Anderson impurity model (GAIM), in which a locally correlated orbital is coupled to a host with a gapped density of states. Two distinct phases arise, separated by a level-crossing quantum phase transition: a screened singlet phase, adiabatically connected to the non-interacting limit and as such a generalized Fermi liquid (GFL); and an incompletely screened, doubly degenerate local moment (LM) phase. On opening a gap (δ) in the host, the transition occurs at a critical gap δc, the GFL [LM] phase occurring for δ<δc [ δ>δc] . In agreement with numerical renormalization group (NRG) calculations, the critical δc = 0 at the particle-hole symmetric point of the model, where the LM phase arises immediately on opening the gap. In the generic case by contrast δc > 0, and the resultant LMA phase boundary is in good quantitative agreement with NRG results. Local single-particle dynamics are considered in some detail. The major difference between the two phases resides in bound states within the gap: the GFL phase is found to be characterised by one bound state only, while the LM phase contains two such states straddling the chemical potential. Particular emphasis is naturally given to the strongly correlated, Kondo regime of the model. Here, single-particle dynamics for both phases are found to exhibit universal scaling as a function of scaled frequency ω/ωm 0 for fixed gaps δ/ωm 0, where ωm 0 is the characteristic Kondo scale for the gapless (metallic) AIM; at particle-hole symmetry in particular, the scaling spectra are obtained in closed form. For frequencies |ω|/ωm 0 ≫δ/ωm 0, the scaling spectra are found generally to reduce to those of the gapless, metallic Anderson model; such that for small gaps δ/ωm 0≪ 1 in particular, the Kondo resonance that is the spectral hallmark of the usual metallic Anderson model persists more or less in its entirety in the GAIM.  相似文献   

10.
The σ-ω coupling is introduced phenomenologically in the linear σ-ω model to study the nuclear matter properties. It is shown that not only the effective nucleon mass M* but also the effective σ meson mass m σ * and the effective ω meson mass m ω * are nucleon-density-dependent. When the model parameters are fitted to the nuclear saturation point, with the nuclear radius constant r 0 = 1.14 fm and volume energy a 1 = 16.0 MeV, as well as to the effective nucleon mass M * = 0.85M, the model yields m σ * = 1.09m σ and m ω * = 0.90m ω at the saturation point, and the nuclear incompressibility K 0 = 501 MeV. The lowest value of K0 given by this model by adjusting the model parameters is around 227 MeV. Received: 23 March 2001 / Accepted: 8 June 2001  相似文献   

11.
A Gaussian whistler pulse is shown to cause ponderomotive acceleration of electrons in a plasma when the peak whistler amplitude exceeds a threshold value and the whistler frequency is greater than half the cyclotron frequency, ω>ω c /2. The threshold amplitude decreases with the ratio of plasma frequency to electron cyclotron frequency, ω p /ω c . However, above the threshold amplitude, the acceleration energy decreases with ω p /ω c . The electrons gain velocities about twice the group velocity of the whistler.  相似文献   

12.
Chandu Venugopal 《Pramana》1987,28(2):181-193
A dispersion relation for the near perpendicular propagation of the electromagnetic ion cyclotron wave has been derived in a fusion plasma that has deuterium as a majority species, hydrogen as a minority species and fully ionized oxygen as an impurity constituent; all being modelled by loss cone distribution functions. The wave has a frequencyω around the deuterium ion gyrofrequency-ΩD and a wavelength much longer than its Larmor radiusγ LD(k γ LD<1); the plasma itself being characterized by large ion plasma frequencies (ω PD 2D 2 ). Two modes, a low frequency (LF) and a high frequency (HF) mode of opposite electrical energy can propagate in the plasma; the instabilities that arise are thus due to an interaction of modes of opposite energies. We find that while hydrogen tends to destabilize the plasma, the impurity oxygen ions have the reverse effect. Also the plasma is most stable when the ratios of the perpendicular components of oxygen-to-deuterium and hydrogen-to-deuterium temperatures are kept low. Detailed studies of the wave propagation characteristics and energy reveal the close resemblance of a loss cone plasma containing oxygen to a stable Maxwellian plasma in regard to wave stability, propagation and energy.  相似文献   

13.
We derive a microscopic transport theory of multiterminal hybrid structures in which a superconductor is connected to several spin-polarized electrodes. We discuss the non-perturbative physics of extended contacts, and show that such contacts can be well represented by averaging out the phase of the electronic wave function. The intercontact Andreev reflection and elastic cotunneling conductances are identical if the phase can be averaged out, namely in the presence of at least one extended contact. The maximal conductance of a two-channel contact is proportional to (e 2/h)(a 0/D)2exp[-D/ξ(ω*)], where D is the distance between the contacts, a0 the lattice spacing, ξ(ω) is the superconducting coherence length, and ω* is the cross-over frequency between a perturbative regime ( ω < ω*) and a non perturbative regime ( ω* < ω < Δ). Received 18 June 2001 and Received in final form 17 January 2002  相似文献   

14.
pump (ω)Eprobe *(ω)|Eprobe(ω)|2. This is much easier to detect than transient grating, photon echo, or four-wave mixing schemes that use higher-order nonlinearities. We have applied this technique to measure the energy gap and dephasing time of the dangling bond interband transition on the GaAs(110)-relaxed (1×1) surface. Surface-carrier/surface-phonon interaction plays an important and perhaps dominant role in surface carrier dephasing consistent with the larger electron-phonon coupling on the surface compared to the bulk. Received: 13 October 1998  相似文献   

15.
We discuss the excess conductivity at nonzero frequencies in a superconductor above Tc within the Gaussian approximation. We focus the attention on the temperature range not too close to Tc: within a time-dependent Ginzburg-Landau formulation, we phenomenologically introduce a short wavelength cutoff (of the order of the inverse coherence length) in the fluctuational spectrum to suppress high momentum modes. We treat the general cases of thin wires, anisotropic thin films and anisotropic bulk samples. We obtain in all cases explicit expressions for the finite frequency fluctuational conductivity. The dc case directly follows. Close to Tc the cutoff has no effect, and the known results for Gaussian fluctuations are recovered. Above Tc, and already for ε = ln(T/T c) > 10-2, we find strong suppression of the paraconductivity as compared to the Gaussian prediction, in particular in the real part of the paraconductivity. At high ε the cutoff effects are dominant. We discuss our results in comparison with data on high-Tc superconductors. Received 19 March 2002 Published online 25 June 2002  相似文献   

16.
Triglycine sulfate (TGS) films have been prepared by evaporation from a saturated aqueous solution on substrates of fused quartz coated by a layer of thermally deposited aluminum (Al/SiO2) and white sapphire (α-Al2O3) on whose surface interdigital electrodes have been deposited by photolithography. The TGS films have a polycrystalline structure made up of blocks measuring 0.1–0.3 mm (Al/SiO2) and 0.1 × 1.0 mm (α-Al2O3). The polar axis in the blocks is mostly confined to the substrate plane. The temperature dependences of the capacitance and dielectric losses normal to and in the film plane have maxima at the temperature coinciding with that of the ferroelectric phase transition in a bulk crystal, T c . The low-frequency conductivity G in TGS/Al/SiO2 structures displays a frequency dispersion described by the relation G ∼ ω s (s ≈ 0.82). The conduction can be tentatively ascribed to the hopping mechanism involving localized carriers with a ground state energy of 0.8–0.9 eV. At temperatures above and below T c , the low-frequency conductivity in TGS/α-Al2O3 films operates through a thermally-activated mechanism with an activation energy of 0.9–1.0 eV. At the phase transition, an additional contribution to conductivity appears in TGS/α-Al2O3 films with a dispersion G ∼ ω0.5, which can be associated with domain-wall relaxation.  相似文献   

17.
The directed polymer in a 1+3 dimensional random medium is known to present a disorder-induced phase transition. For a polymer of length L, the high temperature phase is characterized by a diffusive behavior for the end-point displacement R2 ∼L and by free-energy fluctuations of order ΔF(L) ∼O(1). The low-temperature phase is characterized by an anomalous wandering exponent R2/L ∼Lω and by free-energy fluctuations of order ΔF(L) ∼Lω where ω∼0.18. In this paper, we first study the scaling behavior of various properties to localize the critical temperature Tc. Our results concerning R2/L and ΔF(L) point towards 0.76 < Tc ≤T2=0.79, so our conclusion is that Tc is equal or very close to the upper bound T2 derived by Derrida and coworkers (T2 corresponds to the temperature above which the ratio remains finite as L ↦ ∞). We then present histograms for the free-energy, energy and entropy over disorder samples. For T ≫Tc, the free-energy distribution is found to be Gaussian. For T ≪Tc, the free-energy distribution coincides with the ground state energy distribution, in agreement with the zero-temperature fixed point picture. Moreover the entropy fluctuations are of order ΔS ∼L1/2 and follow a Gaussian distribution, in agreement with the droplet predictions, where the free-energy term ΔF ∼Lω is a near cancellation of energy and entropy contributions of order L1/2.  相似文献   

18.
We analyze the recent total cross section data for pppΛK + near threshold measured at COSY. Using an effective range approximation for the on-shell pΛ S-wave final state interaction we extract from these data the combination ?= (2|K s|2+|K t|2)−1/2= 0.38 fm4 of the singlet (K s) and triplet (K t) threshold transition amplitudes. We present an exploratory calculation of various (tree-level) vector and pseudoscalar meson exchange diagrams. Pointlike ω-exchange alone and the combined (ρ0,ω,K*+)-exchange can explain the experimental value of ?. The pseudoscalar meson exchanges based on a SU(3) chiral Lagrangian turn out to be too large. However, when adding π0-exchange in combination with the resonant πNS 11(1650) →KΛ transition and introducing monopole form factors with a cut-off Λc= 1.5 GeV one is again able to reproduce the experimental value of ?. More exclusive measurements are necessary to reveal the details of the pppΛK + production mechanism. Received: 28 October 1998 / Revised version: 12 January 1999  相似文献   

19.
The double differential dilepton spectrum d/(d 2 d 2) at fixed transverse mass M allows a direct access to the vector meson spectral functions. Within a fireball model the sensitivity of d/(d 2 d 2) against variations of both the in-medium properties of mesons and the dynamics of the fireball is investigated. In contrast to the integrated invariant-mass spectrum d/d 2, in the spectrum d/(d 2 d 2) with fixed M the ω signal is clearly seen as bump riding on the ρ background even in case of strong in-medium modifications.[3mm] Received: 16 November 2000 / Accepted: 16 January 2001  相似文献   

20.
In 1969, Andreev and Lifshitz have conjectured the existence of a supersolid phase taking place at zero temperature between the quantum liquid and the solid. In this and a succeeding paper, we re-visit this issue for a few polarized electrons (spinless fermions) interacting via a U/r Coulomb repulsion on a two dimensional L×L square lattice with periodic boundary conditions and nearest neighbor hopping t. This paper is restricted to the magic number of particles N = 4 for which a square Wigner molecule is formed when U increases and to the size L = 6 suitable for exact numerical diagonalizations. When the Coulomb energy to kinetic energy ratio r s = UL/(2t ) reaches a value r s F ≈ 10, there is a level crossing between ground states of different momenta. Above r s F, the mesoscopic crystallization proceeds through an intermediate regime ( r s F < r s < r s W ≈ 28) where unpaired fermions with a reduced Fermi energy co-exist with a strongly paired, nearly solid assembly. We suggest that this is the mesoscopic trace of the supersolid proposed by Andreev and Lifshitz. When a random substrate is included, the level crossing at r s F is avoided and gives rise to a lower threshold r s F(W) < r s F where two usual approximations break down: the Wigner surmise for the distribution of the first energy excitation and the Hartree-Fock approximation for the ground state. Received 21 June 2002 Published online 14 February 2003 RID="a" ID="a"e-mail: jpichard@cea.fr  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号