首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 639 毫秒
1.
In this investigation, the structure, stability, and orientation of bovine serum albumin (BSA) adsorbed onto silica particles were studied using differential scanning calorimetry (DSC) and limited proteolysis in combination with mass spectrometry (MS). DSC gave information on the overall structural stability of BSA while limited proteolysis was used to probe the accessibility of enzymatic cleavage sites, thereby yielding information on the orientation and structure of BSA adsorbed to silica surfaces. Thermal investigation of BSA in various buffers, both free in solution and in the adsorbed state, showed that solutes that surround the protein played an important role with respect to the overall structural stability and the structural heterogeneity of BSA. Limited proteolysis with trypsin and chymotrypsin indicated that BSA in the adsorbed state is oriented with domain 2 facing the silica surface. Also, upon adsorption, no additional cleavage sites were exposed. The combination of the results presented in this study implied that BSA molecules adsorbed onto silica particles were significantly reduced in their structural stability, but not to an extent that internal residues within the native structure became fully exposed to the solution.  相似文献   

2.
Electrostatic effects on protein adsorption were investigated using differential scanning calorimetry (DSC) and adsorption isotherms. The thermal denaturation of lysozyme, ribonuclease A (RNase), and alpha-lactalbumin in solution and adsorbed onto silica nanoparticles was examined at three concentrations of cations: 10 and 100 mM of sodium and 100 mM of sodium to which 10 mM of calcium was added. The parameters investigated were the denaturation enthalpy (DeltaH), the temperature at which the denaturation transition was half-completed (T(m)), and the temperature range of the denaturation transition. For lysozyme and RNase, adsorption isotherms depend strongly on the ionic strength. At low ionic strength both proteins have a high affinity for the silica particles and adsorption is accompanied by a 15-25% reduction in DeltaH and a 3-6 degrees C decrease in T(m), indicating that the adsorbed state of the proteins is destabilized. Also, an increase in the width of the denaturation transition is observed, signifying a larger conformational heterogeneity of the surface bound proteins. At higher ionic strengths, both with and without the addition of calcium, no significant adsorption-induced alteration in DeltaH was observed for all three proteins. The addition of calcium, however, decreases the width of the denaturation transition for lysozyme and RNase in the adsorbed state. Copyright 2001 Academic Press.  相似文献   

3.
Three model proteins, bovine serum albumin, hen's egg lysozyme and bovine serum fibrinogen, were adsorbed from aqueous solution onto finely dispersed ceramic particles, namely different kinds of alumina and hydroxyapatite particles. The influence of adsorption on protein secondary structure was investigated. The FTIR spectroscopic findings were compared with the results of DSC measurements. In almost all cases it was found that adsorption results in destabilisation and structural loss of the bound protein. A decrease in transition enthalpy is correlated with a loss in alpha-helical structure, which seems to be the most sensitive structure on adsorption-induced rearrangements. A total collapse of structure in the adsorbed proteins was not determined on any ceramic surface. Some residual structure is always retained. Structural changes in the D- or E-domains of fibrinogen could be independently observed by two different calorimetric signals. The two techniques applied in the present study -- micro-DSC and FTIR spectroscopy -- can be concluded to provide complementary information on adsorption-induced structural changes on both the molecular (thermal stability, overall structure) and the sub-molecular level (secondary structure).  相似文献   

4.
The adsorption kinetics and dodeceyltrimethylammonium bromide-mediated elution of the wild type and two structural stability mutants of bacteriophage T4 lysozyme were recorded in situ, at silica surfaces. Experiments were performed at different solution concentrations, ranging from 0.01 to 1.0 mg/ml. Plateau values of adsorbed mass generally increased with increasing solution concentration, with the adsorbed layer being only partially eluted by buffer. Treatment with surfactant removed more of the adsorbed protein in each case, with the remaining adsorbed mass varying little with concentration. Comparison of the data to an adsorption mechanism allowing for three adsorbed states, distinguished by binding strength, showed that the fraction of adsorbed molecules present in the most tightly bound state (state 3) decreased as adsorption occurred from solutions of increasing concentration. However, the absolute amounts of state 3 molecules present in each case were less dependent on solution concentration. Adsorption of T4 lysozyme into state 3 is suggested to occur early in the adsorption process and continue until some critical surface concentration is reached. Beyond this critical value of adsorbed mass, adsorption is suggested to progress with adoption of more loosely bound states.  相似文献   

5.
The kinetics of adsorption of lysozyme and alpha-lactalbumin from aqueous solution on silica and hydrophobized silica has been studied. The initial rate of adsorption of lysozyme at the hydrophilic surface is comparable with the limiting flux. For lysozyme at the hydrophobic surface and alpha-lactalbumin on both surfaces, the rate of adsorption is lower than the limiting flux, but the adsorption proceeds cooperatively, as manifested by an increase in the adsorption rate after the first protein molecules are adsorbed. At the hydrophilic surface, adsorption saturation (reflected in a steady-state value of the adsorbed amount) of both proteins strongly depends on the rate of adsorption, but for the hydrophobic surface no such dependency is observed. It points to structural relaxation ("spreading") of the adsorbed protein molecules, which occurs at the hydrophobic surface faster than at the hydrophilic one. For lysozyme, desorption has been studied as well. It is found that the desorbable fraction decreases after longer residence time of the protein at the interface.  相似文献   

6.
The adsorption characteristics of an ethyl(hydroxyethyl)cellulose (EHEC) polymer onto colloidal silica particles from aqueous solution have been investigated. The influence of solution temperature and the silica surface chemistry on EHEC adsorption isotherms and adsorbed layer thicknesses have been determined in an attempt to elucidate the mechanisms of adsorption. As the hydrophobicity of the silica particles are increased by physical and chemical treatment, the plateau EHEC adsorbed amount increased, while the corresponding adsorbed layer thickness decreased. The estimated free energy of adsorption (DeltaG(o)(ads)) was shown to be dependent on the silica surface chemistry, but did not correlate directly with silica's advancing water contact angle and suggests that EHEC adsorption is not directly controlled by hydrophobicity alone. As the solution temperature increased from 18 to 37 degrees C, the plateau coverage of EHEC increased while the layer thickness generally decreased, this concurred with a reduction in the solvency. For hydrophilic and dehydrated silica particles, DeltaG(o)(ads) decreased in magnitude with increasing temperature, whereas for chemically treated silica, DeltaG(o)(ads) increased with temperature. These findings are discussed with respect to the specific interactions between EHEC segments and surface sites, which control the adsorption mechanisms of cellulose polymers. Copyright 2000 Academic Press.  相似文献   

7.
Adsorption of chicken egg lysozyme on silica nanoparticles of various diameters has been studied. Special attention has been paid to the effect of nanoparticle size on the structure and function of the adsorbed protein molecules. Both adsorption patterns and protein structure and function are strongly dependent on the size of the nanoparticles. Formation of molecular complexes is observed for adsorption onto 4-nm silica. True adsorptive behavior is evident on 20- and 100-nm particles, with the former resulting in monolayer adsorption and the latter yielding multilayer adsorption. A decrease in the solution pH results in a decrease in lysozyme adsorption. A change of protein structure upon adsorption is observed, as characterized by a loss in alpha-helix content, and this is strongly dependent on the size of the nanoparticle and the solution pH. Generally, greater loss of alpha helicity was observed for the lysozyme adsorbed onto larger nanoparticles under otherwise similar conditions. The activity of lysozyme adsorbed onto silica nanoparticles is lower than that of the free protein, and the fraction of activity lost correlates well with the decrease in alpha-helix content. These results indicate that the size of the nanoparticle, perhaps because of the contributions of surface curvature, influences adsorbed protein structure and function.  相似文献   

8.
Adsorption of atrazine on soils: model study   总被引:1,自引:0,他引:1  
The adsorption of the widely used herbicide atrazine onto three model inorganic soil components (silica gel, gamma-alumina, and calcite (CaCO(3)) was investigated in a series of batch experiments in which the aqueous phase equilibrated with the solid, under different solution conditions. Atrazine did not show discernible adsorption on gamma-alumina (theta=25 degrees C, 3.8相似文献   

9.
In this work we study by differential scanning calorimetry (DSC) the lateral phase separation induced by a globular protein (lysozyme) on vesicles built-up by charged (phosphatidic acid) and neutral (phosphatidylcholine) lipids.The adsorption of the positively charged protein onto the negative vesicle surface induces the formation of micro-domains richer in the charged lipid component. This phenomenon is revealed as a splitting of the excess heat capacity peak associated to the melting of the lipid hydrocarbon chains.Also, the peak associated to the protein denaturation is shifted, suggesting the presence of adsorbed proteins onto the vesicle surface. The surface electrostatic potentials, both of proteins and vesicles, have been modulated by pH and ionic strength variations, showing a deep influence of the electric charges in modifying protein adsorption, rate of denaturation (related to unfolding enthalpy variation), and lipid micro-domain formation.Some of the present results have been rationalized on the basis of a theoretical model recently developed by the authors.  相似文献   

10.
The reversibility of the adsorption-desorption cycle was established by comparing the thermostability (determined by differential scanning calorimetry) and secondary structure (obtained by circular dichroism spectroscopy) of BSA before adsorption, adsorbed on, and exchanged from silica particles. Circular dichroism was also measured as a function of temperature at a given wavelength. Adsorbed BSA presents a higher thermostability and a lower alpha-helix content than the native protein while it regains its conformation when released from the surface back into the solution; the homomolecular exchange is reversible.The changes in ellipticity (at a given wavelength) as a function of the temperature show that the thermal denaturation of native, adsorbed, and exchanged BSA proceeds in two steps. For the dissolved protein, the first step up to 50 degrees C involves a slight change in the structure while in the 50-90 degrees C temperature range the actual unfolding takes place. For the adsorbed BSA, the first step proceeds up to 60 degrees C and includes some intermolecular association between the adsorbed protein molecules, which may be responsible for the increased thermostability. The unfolding occurs in the 60-90 degrees C range; it is less cooperative and involves a lower enthalpy change than the native protein. Adsorbed BSA presents the same secondary structure as that observed for dissolved BSA that has passed a heating-cooling cycle. Copyright 2001 Academic Press.  相似文献   

11.
A new method is presented for monitoring the conformational stability of various parts of a protein that is physically adsorbed onto nanometer-sized silica particles. The method employs hydrogen/deuterium (H/D) exchange of amide hydrogens, a process that is extremely sensitive to structural features of proteins. The resulting mass increase is analyzed with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. Higher structural specificity is obtained by enzymatically cleaving the adsorbed proteins prior to mass spectrometric analysis. The mass increases of four peptic fragments of myoglobin are followed as a function of the H/D exchange time. The four peptic fragments cover 90% of the myoglobin structure. Two of the peptic fragments, located in the middle of the myoglobin sequence and close to the heme group, do not show any adsorption-induced changes in their structural stability, whereas the more stable C- and N-terminal fragments are destabilized. Interestingly, for the N-terminal fragment, comprising residues 1-29, two distinct and equally large conformational populations are observed. One of these populations has a stability similar to that in solution (-23 kJ/mol), whereas the other population is highly destabilized upon adsorption (-11 kJ/mol).  相似文献   

12.
We use Fourier Transform infrared spectroscopy (FT-IR) spectroscopy to study the thermal unfolding and refolding behavior of ribonuclease (RNase A) adsorbed to spherical polyelectrolyte brushes (SPB). The SPB consist of a solid poly(styrene) core of ca. 100 nm diameter onto which long chains of poly(styrene sulfonic acid), PSS have been densely attached. The particles bearing the adsorbed protein are dispersed in aqueous buffer solution at a pH close to the isoelectric point (9.6) of the protein. The secondary structure of the protein was analyzed by FT-IR spectroscopy and compared to the structure of the native protein before adsorption. The unfolding of the free RNase A in solution was found to be fully reversible with an unfolding temperature of 65 degrees C, in accordance to previous studies. However, after adsorption to the SPB, the unfolding temperature of the protein molecule is lowered by 10 degrees C and the Van't Hoff enthalpy of the unfolding process is significantly reduced. Moreover the unfolding of the adsorbed protein is irreversible. The phenomenon may be explained by an increase in binding sites due to unfolding of the globular structure. Protein adsorption to a spherical polyelectrolyte brush.  相似文献   

13.
The interactions of proteins with solid surfaces occur in a variety of situations. Motivated by the many nanoengineering applications of protein-carbon nanotube hybrids, we investigate the conformational transitions of hen egg white lysozyme adsorbed on a carbon nanotube. Using a C(α) structure-based model and replica exchange molecular dynamics, we show how the folding/unfolding equilibrium of the adsorbed protein varies with the strength of its coupling to the surface. The stability of the native state depends on the balance between the favorable entropy and unfavorable enthalpy change on adsorption. In the case of a weakly attractive surface when the former dominates, the protein is stabilized. In this regime, the protein can fold and unfold while maintaining the same binding fraction. With increasing surface attraction, the unfavorable enthalpic effect dominates, the native state is destabilized, and the protein has to extensively unbind before changing states from unfolded to folded. At the highest surface coupling, the entropic penalty of folding vanishes, and a folding intermediate is strongly stabilized. In this intermediate state, the α-domain of lysozyme is disrupted, while the β-sheet remains fully structured. We rationalize the relative stability of the two domains on the basis of the residue contact order.  相似文献   

14.
Recently, nanodiamond particles have attracted increasing attention as a promising nanomaterial for its biocompatibility, easy functionalization and conjugation with biomolecules, and its superb physical/chemical properties. Nanodiamonds are mainly used as markers for cell imaging, using its fluorescence or Raman signals for detection, and as carriers for drug delivery. For the success of these applications, the biomolecule associated with the nanodiamond has to retain its functionality. In this work, the protein activities of egg white lysozyme adsorbed on nanodiamond particles of different sizes is investigated. The lysozyme nanodiamond complex is used here as a protein model for analyzing its structural conformation changes and, correspondingly, its enzymatic activity after the adsorption. Fourier-transform infrared spectroscopy (FTIR) is used for the analysis of the sensitive protein secondary structure. To access the activities of the adsorbed lysozyme, a fluorescence-based assay is used. The process of adsorption is also analyzed using UV-visible spectroscopic measurements in combination with analysis of nanodiamond properties with FTIR, Raman spectroscopy, and ζ-potential measurements. It is found that the activity of lysozyme upon adsorption depends on the nanodiamond's size and surface properties, and that the nanodiamond particles can be selected and treated, which do not alter the lysozyme functional properties. Such nanodiamonds can be considered convenient nanoparticles for various bioapplications.  相似文献   

15.
External reflection FTIR spectroscopy and surface pressure measurements were used to compare conformational changes in the adsorbed structures of three globular proteins at the air/water interface. Of the three proteins studied, lysozyme, bovine serum albumin and beta-lactoglobulin, lysozyme was unique in its behaviour. Lysozyme adsorption was slow, taking approximately 2.5 h to reach a surface pressure plateau (from a 0.07 mM solution), and led to significant structural change. The FTIR spectra revealed that lysozyme formed a highly networked adsorbed layer of unfolded protein with high antiparallel beta-sheet content and that these changes occurred rapidly (within 10 min). This non-native secondary structure is analogous to that of a 3D heat-set protein gel, suggesting that the adsorbed protein formed a highly networked interfacial layer. Albumin and beta-lactoglobulin adsorbed rapidly (reaching a plateau within 10 min) and with little change to their native secondary structure.  相似文献   

16.
The adsorption of hen egg white lysozyme onto a solid polytris(trimethylsiloxy)silylstyrene (pTSS) surface from a D(2)O solution at pD 7 containing 100 mM NaCl and 10 mM sodium deuterated phosphate was monitored at 25 degrees C by Fourier transform infrared spectroscopy using the attenuated total reflection (ATR) method. The infrared spectrum attributed to only the adsorbed lysozyme was derived from the observed spectrum, and the amount of adsorbed lysozyme was determined as a function of time and lysozyme concentration. The kinetics of adsorption could be decomposed into two components, one of which was a process with a time constant of larger than 4 h(-1) and the other was a process with one of about 0.1 h(-1). These spectra showed that the lysozyme adsorbed in the faster process had a higher beta-structure content than the dissolved lysozyme. It was also found that the slower adsorption induced some conformational change in the lysozyme adsorbed in the faster process and/or that adsorbed in the slower process. After adsorption for 24 h, the pTSS surface was rinsed out with lysozyme-free solution. The resultant spectra of the surface indicated that the lysozyme adsorbed in the faster process was bound irreversibly on the surface and was changed to a conformer with a higher beta-structure content during the slower process. The experimental procedures and the theoretical applications for such a quantitative analysis in the ATR spectroscopic method are presented in detail.  相似文献   

17.
Infrared spectra of hen egg white lysozyme and bovine serum albumin (BSA) adsorbed on a solid poly tris(trimethylsiloxy)silylstyrene (pTSS) surface in D2O solution were measured using attenuated total reflection (ATR) Fourier transform infrared spectroscopy. From the area and shape of the amide I' band of each spectrum, the adsorption amount and the secondary structure were determined simultaneously, as a function of adsorption time. We could show that the average conformation for all the adsorbed lysozyme molecules was solely determined by the adsorption time, and independent of the bulk concentration, while the adsorption amount increased with the bulk concentration as well as the adsorption time. These results suggest that lysozyme molecules form discrete assemblies on the surface, and that the surface assemblies grow over several hours to have a definite architecture independent of the adsorption amount. As for BSA, the extent of the conformational change was solely determined by the adsorption amount, regardless of the bulk concentration and the adsorption time. These differences in the adsorption properties of lysozyme and BSA may reflect differences in their conformational stabilities.  相似文献   

18.
Solutions of suspended particles of nanodiamond and nanosilica in deionized water 25 mg/10 mL were prepared for the purpose of achieving saturation adsorption. The respective saturation thresholds and adsorption reaction constants of lysozyme of extremely diluted concentrations 0–1000 nmol/L in 7 mmol/L (potassium phosphate buffer solution) PPBS on the surfaces of nanodiamond and nanosilica of 100 nm diameter have been measured. The adsorbed quantities of lysozyme on a unit surface area of both nanoparticles can be derived. The possible influences by the adsorption surface profile and adsorption surface area, adsorption ability of the nanoparticles, strength and activity of lysozyme have been discussed.  相似文献   

19.
Infrared-visible sum frequency generation (SFG) vibrational spectroscopy, in combination with fluorescence microscopy, was employed to investigate the surface structure of lysozyme, fibrinogen, and bovine serum albumin (BSA) adsorbed on hydrophilic silica and hydrophobic polystyrene as a function of protein concentration. Fluorescence microscopy shows that the relative amounts of protein adsorbed on hydrophilic and hydrophobic surfaces increase in proportion with the concentration of protein solutions. For a given bulk protein concentration, a larger amount of protein is adsorbed on hydrophobic polystyrene surfaces compared to hydrophilic silica surfaces. While lysozyme molecules adsorbed on silica surfaces yield relatively similar SFG spectra, regardless of the surface concentration, SFG spectra of fibrinogen and BSA adsorbed on silica surfaces exhibit concentration-dependent signal intensities and peak shapes. Quantitative SFG data analysis reveals that methyl groups in lysozyme adsorbed on hydrophilic surfaces show a concentration-independent orientation. However, methyl groups in BSA and fibrinogen become less tilted with respect to the surface normal with increasing protein concentration at the surface. On hydrophobic polystyrene surfaces, all proteins yield similar SFG spectra, which are different from those on hydrophilic surfaces. Although more protein molecules are present on hydrophobic surfaces, lower SFG signal intensity is observed, indicating that methyl groups in adsorbed proteins are more randomly oriented as compared to those on hydrophilic surfaces. SFG data also shows that the orientation and ordering of phenyl rings in the polystyrene surface is affected by protein adsorption, depending on the amount and type of proteins.  相似文献   

20.
The adsorption of lysozyme (Lz) onto nanoporous carbon molecular sieves with various pore diameters has been studied at different solution pH values. All the adsorption isotherms have successfully been correlated by the Langmuir equation. The amount of adsorbed Lz depends on the solution pH as well as on the specific pore volume and pore diameter of the adsorbents. The maximum adsorption was observed near the isoelectric point of the Lz (pI approximately 11), suggesting that suppression of electric repulsion between the enzymes plays an important role in the adsorption process. Moreover, the amount adsorbed depends on the pore size and pore volume of the nanoporous carbon adsorbents, indicating that the Lz molecules are adsorbed inside the mesopores. CMK-3-150 shows a larger amount of Lz adsorption as compared to CMK-3. The increased Lz adsorption capacity of CMK-3-150 may be due to the larger pore volume and pore diameter as compared to that of CMK-3. The unaltered structural order of the nanoporous adsorbents after the adsorption has been confirmed by the physicochemical characterization techniques such as XRD and N(2) adsorption. In addition, FT-IR spectroscopic studies confirm that the Lz used in this study is stable even after the adsorption on the nanoporous carbon. These results indicate that nanoporous carbon has superior water stability and thus is a more appropriate adsorbent for biomaterials than nanoporous silica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号