首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multiplication efficiency of a millimeter-wave Schottky-varactor quintupler with fixed idler terminations was studied. The highest efficiency measured was 4.2% at 168 GHz with 10 mW input power and 3.3% with 40 mW input power. Over the range from 165 GHz to 170 GHz the output power was 0.7–1.3 mW withp in =40 mW.  相似文献   

2.
We report on fundamental and intracavity frequency-doubled emission in a miniature Nd:YVO4 (3×3×1 mm) laser. A maximum slope efficiency of ηs=58.6%, with optical efficiency of η0=53.0% at 780 mW pump power was realized in a TEM00 output beam. To obtain the optimum pump-beam focusing conditions we applied a new formalism in which the pump-beam propagation in the active medium was described by its M2 factor. A good agreement between theoretical predictions and experimental results was observed. In second-harmonic regime, obtained by a KTP crystal, 230 mW green power that corresponds to 54% nonlinear conversion efficiency was reached.  相似文献   

3.
The efficiency of millimeter wave doublers with a wide tunable bandwidth was studied. The efficiency depends on the varactor parameters and the embedding impedances seen by the diode at fundamental and harmonic frequencies. Millimeter wave doublers were simulated with a nonlinear analysis program to find optimum embedding impedances for a given diode. Also the sensitivity of the efficiency to various diode and circuit parameters was evaluated. A scaled model was constructed in order to experimentally optimize the impedances. For experimental verification a doubler from 40–58 GHz to 80–116 GHz was constructed. The highest efficiency measured was 45% at 94 GHz with 5 mW input power. The highest efficiency obtained with 20 mW input power was 38%.  相似文献   

4.
A reference arm W-band (94 GHz) microwave bridge with two sample-irradiation arms for saturation recovery (SR) EPR and ELDOR experiments is described. Frequencies in each arm are derived from 2 GHz synthesizers that have a common time-base and are translated to 94 GHz in steps of 33 and 59 GHz. Intended applications are to nitroxide radical spin labels and spin probes in the liquid phase. An enabling technology is the use of a W-band loop-gap resonator (LGR) [J.W. Sidabras, R.R. Mett, W. Froncisz, T.G. Camenisch, J.R. Anderson, J.S. Hyde, Multipurpose EPR loop-gap resonator and cylindrical TE011 cavity for aqueous samples at 94 GHz, Rev. Sci. Instrum. 78 (2007) 034701]. The high efficiency parameter (8.2 GW−1/2 with sample) permits the saturating pump pulse level to be just 5 mW or less. Applications of SR EPR and ELDOR to the hydrophilic spin labels 3-carbamoyl-2,2,5,5-tetra-methyl-3-pyrroline-1-yloxyl (CTPO) and 2,2,6,6,-tetramethyl-4-piperidone-1-oxyl (TEMPONE) are described in detail. In the SR ELDOR experiment, nitrogen nuclear relaxation as well as Heisenberg exchange transfer saturation from pumped to observed hyperfine transitions. SR ELDOR was found to be an essential method for measurements of saturation transfer rates for small molecules such as TEMPONE. Free induction decay (FID) signals for small nitroxides at W-band are also reported. Results are compared with multifrequency measurements of T1e previously reported for these molecules in the range of 2–35 GHz [J.S. Hyde, J.-J. Yin, W.K. Subczynski, T.G. Camenisch, J.J. Ratke, W. Froncisz, Spin label EPR T1 values using saturation recovery from 2 to 35 GHz. J. Phys. Chem. B 108 (2004) 9524–9529]. The values of T1e decrease at 94 GHz relative to values at 35 GHz.  相似文献   

5.
We discuss the design of uncooled lasers which minimizes the change in both threshold current and slope efficiency over the temperature range from–40 to +85°C [1]. To prevent carrier overflow under high-temperature operation, the electron confinement energy is increased by using the Al x Ga y In1–x–y As/InP material system [1] instead of the conventional Ga x In1–x As y P1–y /InP material system. Experimentally, we have investigated strained quantum well lasers with three different barrier layers and confirmed that the static and dynamical performance of the lasers with insufficient carrier confinement degrades severely under high-temperature operation [2]. With an optimized barrier layer, the Al x Ga y In1–x–y As/InP strained quantum well lasers show superior hightemperature performance, such as a small drop of 0.3 dB in slope efficiency when the heat sink temperature changes from 25 to 100°C [3], a maximum CW operation temperature of 185°C [4], a thermally-limited 3-dB bandwidth of 13.9 GHz at 85°C [2], and a mean-time-to-failure of 33 years at 100°C and 10 mW output power [5].  相似文献   

6.
The multiplication efficiency of millimeter wave triplers was studied. In the case of a commercially available Schottky-varactor, the tripler efficiency versus pump power, bias voltage, and embedding impedances at the fundamental and harmonic frequencies was simulated using a nonlinear analysis program. A scaled model of a waveguide mount was used to experimentally optimize the impedances. For experimental verification a tripler from 33–39 GHz to 99–117 GHz was constructed. The highest efficiency measured was 28% at 107 GHz with 5 mW input power. The highest efficiency obtained with 30 mW input power was 18%.  相似文献   

7.
利用Nd:YVO4激光晶体的自受激拉曼效应,结合Cr:YAG被动锁模技术和倍频技术,实现了结构紧凑的1176 nm和588 nm黄光锁模激光输出。激光器为LD端面泵浦,三镜折叠腔结构,并且采用了透过率为10%的输出镜。Nd:YVO4晶体长度为10 mm,Nd3+离子掺杂质量分数为0.2%,Cr:YAG晶体的初始透过率为67%。10 W激光泵浦时,1176 nm激光平均输出功率为123 mW,调Q包络宽度为6 ns,调Q包络内的锁模脉冲重复频率高达1 GHz。588.2 nm 黄光的平均输出功率为8 mW。  相似文献   

8.
In this paper, the output performances at 1331 nm in continuous-wave (CW) operation and the passive Q-switching regime of a Nd:Gd3Ga5O12(Nd:GGG) laser crystal have been investigated under pumping with diode lasers. A maximum CW output power of 1.5 W was reached at an incident pump power of 7.5 W; the overall optical-to-optical efficiency and the slope efficiency with respect to the pump power were 21.5% and 19.4%, respectively. The passive Q-switching regime was achieved with Co2+:LaMgAl11O19 (Co2+:LMA) saturable absorber (SA) crystals. A maximum average output power of 183 mW was recorded with a Co2+:LMA SA with initial transmission T i of 90%. The pulse energy was 18.7 μJ and the pulse duration was 26.1 ns, which correspond to a pulse peak power of 0.7 kW. With a Co2+:LMA SA with T i=81%, the average power decreased to 131 mW. However, the pulse energy increased to 21.4 μJ, the pulse duration was 16.4 ns and the pulse peak power increased to 1.3 kW.  相似文献   

9.
We report on an extended cavity diode laser for operation near 640 nm. The laser is continuously tunable in 10 GHz ranges with a maximum output power of 3 mW. The laser system has been constructed using off-the-shelf optoelectronic components and easily machinable mechanical parts. The constructed system has been used to study the saturated absorption of the closed 1s5–2p9 neon transition in a radio-frequency discharge that can be maintained at neon pressures down to 10−2 Pa.  相似文献   

10.
Continuous-Wave (CW) diode-laser-pumped experiments using rotating Nd: YAG disk(s) have been performed in the input-power range of 1–6 W and rotation-speed range of 0–25 Hz. With a single Nd: YAG disk in the laser cavity, about 1.56 W of output power at 1.06 µm due to the Nd3+ (4 F 3/24 I 11/2) transition at an absorbed input power of 4.2 W has been observed, leading to an optical-to-optical conversion efficiency of over 37% and slope efficiency of 52% using 7.5% transmission output coupler. The laser output power has been observed to decrease by either increasing the number of Nd:YAG disks in the cavity or increasing the rotation speed of the disk(s).  相似文献   

11.
Formed with a flat–flat resonator, a diode-laser-array end-pumped CW Nd:GdVO4 laser at 1.06 μm, capable of generating 8.6 W of TEM00 output power with optical conversion efficiency of 43% and slope efficiency of 48%, has been developed. The laser beam was nearly diffraction limited, with the beam quality factor measured to be M2=1.22. Under the conditions of multi-mode operation, the laser was able to produce 11.2 W of low-order transverse mode radiation (M2<2) at the incident pump power of 22 W, giving an optical conversion efficiency of 51%, and a slope efficiency of 55%.  相似文献   

12.
We have successfully constructed and tested a superconductor-insulator-superconductor (SIS) receiver for operation at 265–280 GHz using 1 m2 area Nb–AlO x –Nb tunnel junctions fabricated at Stony Brook. The best performance to date is a double sideband (DSB) receiver noise temperature of 129 K at 278 GHz. We find that suppression of the Josephson pair currents with a magnetic field is essential for good performance and a stable DC bias point. Fields as high as 280 gauss have been used with no degradation of mixing performance. We illustrate the improvement in the intermediate frequency (IF) output stability with progressively increasing magnetic fields.  相似文献   

13.
Ultrasound is widely used to disinfect drinking water and wastewater due to its strong physical and chemical effects on microorganisms. The aim of this study was to investigate the effect of ultrasound on the destruction of Mycobacterium strain 6PY1. Ultrasound waves (20 kHz or 612 kHz) were used to treat aqueous suspensions of Mycobacterium at different volumes, initial bacterial concentrations, and power densities. At the same power density and the same exposure time, sonication at high frequency resulted in a lower destruction of Mycobacterium sp. 6PY1 (35.5%) than sonication at low frequency (93%). The percentage of removal was not significantly affected by the volume of the irradiated suspension (150–300 ml) or the initial cell concentration (2.15 × 10−3–1.4 × 10−2 mg protein L−1). At low frequency, the removal percentage of Mycobacterium sp. 6PY1 increased with increasing the power density, with a constant level reached after a certain power density. At high frequency, the removal percentage of Mycobacterium sp. 6PY1 increased with increasing the power density. The mechanism of cell killing was investigated by examining the effects of OH radical scavengers such as sodium carbonate. At high frequency the presence of sodium carbonate suppressed the removal process. However, at low frequency the removal process was not affected, thus indicating that OH radicals have a negligible role in this case. The latter result was supported by ten time’s H2O2 production at high frequency greater than that at low frequency.  相似文献   

14.
Zhang  Y.-J.  Zhu  L.  Gao  Z.-G.  Chen  M.-H.  Dong  Y.  Xie  S.-Z. 《Optical and Quantum Electronics》2003,35(9):879-886
It is well known that complex rate equations and the couple wave equation have to be solved by the method of iteration in the simulation of multi-quantum well (MQW) distributed feedback Bragg (DFB) lasers, and a long CPU time is needed. In this paper, from the oscillation condition of lasers, we propose a simple and fast model for optimization of In1–xy Ga y Al x As strained MQW DFB lasers. The well number and the cavity length of 1.55 m wavelength In1–xy Ga y Al x As MQW DFB lasers are optimized using the model. As a result, the simple model gives almost the same results as the complex one, but 90% CPU time can be saved. In addition, a low threshold, high maximum operating temperature of 550–560 K, and high relaxation oscillation frequency of over 30 GHz MQW DFB laser is presented.  相似文献   

15.
We accurately measured the noise temperature and conversion loss of a cryogenically cooled Schottky diode operating near 800 GHz, using the UCB/MPE Submillimeter Receiver at the James Clerk Maxwell Telescope. The receiver temperature was in the range of the best we now routinely measure, 3150 K (DSB). Without correcting for optical loss or IF mismatch, the raw measurements set upper limits ofT M=2850 K andL M=9.1 dB (DSB), constant over at least a 1 GHz IF band centered at 6.4 GHz with an LO frequency of 803 GHz. Correction for estimated optical coupling and mismatch effects yieldsT M=1600 K andL M=5.5 dB (DSB) for the mixer diode itself. These values indicate that our receiver noise temperature is dominated by the corner cube antenna's optical efficiency and by mixer noise, but not by conversion loss or IF mismatch. The small fractional IF bandwidth, measured mixer IF band flatness from 2 to 8 GHz, and similarly good receiver temperatures at other IF frequencies imply that these values are representative over a range of frequencies near 800 GHz.  相似文献   

16.
In this Paper, we present a fully integrated millimeter wave LC voltage-controlled oscillator (VCO), which employs a novel topology, operating at dual-band frequency of 53.22 GHz-band and 106.44 GHz-band. The low-phase noise performance of –107.3 dBc/Hz and –106.1 dBc/Hz at the offset frequency of 600 kHz, –111.8 dBc/Hz and –110.6 dBc/Hz at the offset frequency of 1 MHz around 53.22 GHz and 106.44 GHz are achieved using IBM BiCMOS-6HP technology, respectively. Two tuning ranges, of 52.7 - 53.8 GHz and 105.4 - 107.6 GHz for the proposed LC VCO are obtained. The output voltage swing of this VCO is around 1.8 Vp-p at the operation frequency of 53.22 GHz and 0.45 Vp-p at 106.44 GHz; the total power consumption is about 16.5 mW. To our knowledge, this is the first oscillator which operates at dual-band frequency above 50 GHz with the best preformance.  相似文献   

17.
This paper proposes a novel Gm-C loop filter instead of a conventional passive loop filter used in a phase-locked loop.The innovative advantage of the proposed architecture is tunable loop filter bandwidth and hence the process variations of passive elements of resistance R and capacitance C can be overcome and the chip area is greatly reduced.Furthermore,the MASH 1-1-1 sigma-delta(Σ▽) modulator is adopted for performing the fractional division number and hence improves the phase noise as well.Measured results show that the locked phase noise is 114.1 dBc/Hz with lower G m-C bandwidth and 111.7 dBm/C with higher G m-C bandwidth at 1 MHz offset from carrier of 5.68 GHz.Including pads and built-in Gm-C filter,the chip area of the proposed frequency synthesizer is 1.06 mm 2.The output power is 8.69 dBm at 5.68 GHz and consumes 56 mW with an off-chip buffer from 1.8-V supply voltage.  相似文献   

18.
Efficient second-harmonic power extraction was demonstrated recently with GaAs tunnel injection transit-time (TUNNETT) diodes up to 235 GHz and with InP Gunn devices up to 325 GHz. This paper discusses the latest theoretical and experimental results from second-harmonic power extraction at submillimeter-wave frequencies and explores the potential of using power extraction at higher harmonic frequencies to generate continuous-wave radiation with significant power levels at frequencies above 325 GHz. Initial experimental results include output power levels of more than 50 W at 356 GHz from a GaAs TUNNETT diode in a third-harmonic mode and at least 0.2–5 W in the frequency range 400–560 GHz from InP Gunn devices in a third or higher harmonic mode. The spectral output of these submillimeter-wave sources was analyzed with a simple Fourier-transform terahertz spectrometer and, up to 426 GHz, with a spectrum analyzer and appropriate harmonic mixers. Initial experimental results from a GaAs/AlAs superlattice electronic device at D-band (110–170 GHz) and J-band (170–325 GHz) frequencies are also included.  相似文献   

19.
Zn1−xCoxO films were grown on glass by sol–gel spin coating process. The Zn1−xCoxO thin films with 10 at.% Co were highly c-axis oriented. The electrical resistivity of the films at 10 at.% Co had the lowest value due to the highest c-axis orientation. XPS and AGM analyses indicated that Co metal clusters weren’t formed, and the ferromagnetism was appeared at room temperature. The characteristics of the electrical resistivity and room temperature ferromagnetism of sol–gel derived Zn1−xCoxO films suggest a potential application to dilute magnetic semiconductor devices.  相似文献   

20.
We have investigated the acousto-optically Q-switched intracavity second-harmonic generation of 1.06 μm in a 1.9-mm-long BiB3O6 crystal, cut for type-I phase-matching direction of (θ,)=(168.9°,90°), performed in a diode-end-pumped Nd:YVO4 laser. When the incident pump power was 4.3 W at 30 kHz of pulse repetition frequency, a maximum average green output power of 480 mW, the shortest pulse with FWHM width of 72 ns, the highest single pulse energy of 16 μJ and the maximum peak power of 222 W were obtained, giving the corresponding optical conversion efficiency of 11.2%. The effect of varying temperature in BIBO crystal on the average green output power was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号