首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Recently Caputo and Fabrizio introduced a new derivative with fractional order without singular kernel. The derivative can be used to describe the material heterogeneities and the fluctuations of different scales. In this article, we derived a new discretization of Caputo–Fabrizio derivative of order α (1 < α < 2) and applied it into the Cattaneo equation. A fully discrete scheme based on finite difference method in time and Legendre spectral approximation in space is proposed. The stability and convergence of the fully discrete scheme are rigorously established. The convergence rate of the fully discrete scheme in H1 norm is O(τ2 + N1?m), where τ, N and m are the time‐step size, polynomial degree and regularity in the space variable of the exact solution, respectively. Furthermore, the accuracy and applicability of the scheme are confirmed by numerical examples to support the theoretical results.  相似文献   

2.
In this article, an efficient algorithm for the evaluation of the Caputo fractional derivative and the superconvergence property of fully discrete finite element approximation for the time fractional subdiffusion equation are considered. First, the space semidiscrete finite element approximation scheme for the constant coefficient problem is derived and supercloseness result is proved. The time discretization is based on the L1‐type formula, whereas the space discretization is done using, the fully discrete scheme is developed. Under some regularity assumptions, the superconvergence estimate is proposed and analyzed. Then, extension to the case of variable coefficients is also discussed. To reduce the computational cost, the fast evaluation scheme of the Caputo fractional derivative to solve the fractional diffusion equations is designed. Finally, numerical experiments are presented to support the theoretical results.  相似文献   

3.
In this article, we consider the finite element methods (FEM) for Grwünwald–Letnikov time-fractional diffusion equation, which is obtained from the standard two-dimensional diffusion equation by replacing the first-order time derivative with a fractional derivative (of order α, with 0?h r+1?+?τ2-α), where h, τ and r are the space step size, time step size and polynomial degree, respectively. A numerical example is presented to verify the order of convergence.  相似文献   

4.
A high‐accuracy numerical approach for a nonhomogeneous time‐fractional diffusion equation with Neumann and Dirichlet boundary conditions is described in this paper. The time‐fractional derivative is described in the sense of Riemann‐Liouville and discretized by the backward Euler scheme. A fourth‐order optimal cubic B‐spline collocation (OCBSC) method is used to discretize the space variable. The stability analysis with respect to time discretization is carried out, and it is shown that the method is unconditionally stable. Convergence analysis of the method is performed. Two numerical examples are considered to demonstrate the performance of the method and validate the theoretical results. It is shown that the proposed method is of order Ox4 + Δt2 ? α) convergence, where α ∈ (0,1) . Moreover, the impact of fractional‐order derivative on the solution profile is investigated. Numerical results obtained by the present method are compared with those obtained by the method based on standard cubic B‐spline collocation method. The CPU time for present numerical method and the method based on cubic B‐spline collocation method are provided.  相似文献   

5.
The main motive of this article is to study the recently developed Atangana-Baleanu Caputo (ABC) fractional operator that is obtained by replacing the classical singular kernel by Mittag-Leffler kernel in the definition of the fractional differential operator. We investigate a novel numerical method for the nonlinear two-dimensional cable equation in which time-fractional derivative is of Mittag-Leffler kernel type. First, we derive an approximation formula of the fractional-order ABC derivative of a function tk using a numerical integration scheme. Using this approximation formula and some properties of shifted Legendre polynomials, we derived the operational matrix of ABC derivative. In the author of knowledge, this operational matrix of ABC derivative is derived the first time. We have shown the efficiency of this newly derived operational matrix by taking one example. Then we solved a new class of fractional partial differential equations (FPDEs) by the implementation of this ABC operational matrix. The two-dimensional model of the time-fractional model of the cable equation is solved and investigated by this method. We have shown the effectiveness and validity of our proposed method by giving the solution of some numerical examples of the two-dimensional fractional cable equation. We compare our obtained numerical results with the analytical results, and we conclude that our proposed numerical method is feasible and the accuracy can be seen by error tables. We see that the accuracy is so good. This method will be very useful to investigate a different type of model that have Mittag-Leffler fractional derivative.  相似文献   

6.
In this paper, a compact finite difference scheme is constructed and investigated for the fourth-order time-fractional integro-differential equation with a weakly singular kernel. In the temporal direction, the Caputo derivative term is treated by means of L1 discrete formula and the Riemann–Liouville fractional integral term is discretized by the second-order convolution quadrature rule. A fully discrete compact difference scheme is constructed with the space discretization by the fourth-order compact approximation. The stability and convergence are obtained by the discrete energy method, the Cholesky decomposition and the reduced-order method. Numerical experiments are presented to verify the theoretical analysis.  相似文献   

7.
In this paper, the finite difference scheme is developed for the time-space fractional diffusion equation with Dirichlet and fractional boundary conditions. The time and space fractional derivatives are considered in the senses of Caputo and Riemann-Liouville, respectively. The stability and convergence of the proposed numerical scheme are strictly proved, and the convergence order is O(τ2−α+h2). Numerical experiments are performed to confirm the accuracy and efficiency of our scheme.  相似文献   

8.
In this paper, a finite difference scheme is proposed for solving the nonlinear time-fractional integro-differential equation. This model involves two nonlocal terms in time, ie, a Caputo time-fractional derivative and an integral term with memory. The existence of numerical solutions is shown by the Leray-Schauder theorem. And we obtain the discrete L2 stability and convergence with second order in time and space by the discrete energy method. Then the uniqueness of numerical solutions is derived. Moreover, an iterative algorithm is designed for solving the derived nonlinear system. Numerical examples are presented to validate the theoretical findings and the efficiency of the proposed algorithm.  相似文献   

9.
To recover the full accuracy of discretized fractional derivatives, nonuniform mesh technique is a natural and simple approach to efficiently resolve the initial singularities that always appear in the solutions of time-fractional linear and nonlinear differential equations. We first construct a nonuniform L2 approximation for the fractional Caputo's derivative of order 1 < α < 2 and present a global consistency analysis under some reasonable regularity assumptions. The temporal nonuniform L2 formula is then utilized to develop a linearized difference scheme for a time-fractional Benjamin–Bona–Mahony-type equation. The unconditional convergence of our scheme on both uniform and nonuniform (graded) time meshes are proven with respect to the discrete H1-norm. Numerical examples are provided to justify the accuracy.  相似文献   

10.
Nanoscale heat transfer cannot be described by the classical Fourier law due to the very small dimension, and therefore, analyzing heat transfer in nanoscale is of crucial importance for the design and operation of nano-devices and the optimization of thermal processing of nano-materials. Recently, time-fractional dual-phase-lagging (DPL) equations with temperature jump boundary conditions have showed promising for analyzing the heat conduction in nanoscale. This article proposes a numerical algorithm with high spatial accuracy for solving the time-fractional dual-phase-lagging nano-heat conduction equation with temperature jump boundary conditions. To this end, we first develop a fourth-order accurate and unconditionally stable compact finite difference scheme for solving this time-fractional DPL model. We then present a fast numerical solver based on the divide-and-conquer strategy for the obtained finite difference scheme in order to reduce the huge computational work and storage. Finally, the algorithm is tested by two examples to verify the accuracy of the scheme and computational speed. And we apply the numerical algorithm for predicting the temperature rise in a nano-scale silicon thin film. Numerical results confirm that the present difference scheme provides ${\rm min}\{2−α, 2−β\}$ order accuracy in time and fourth-order accuracy in space, which coincides with the theoretical analysis. Results indicate that the mentioned time-fractional DPL model could be a tool for investigating the thermal analysis in a simple nanoscale semiconductor silicon device by choosing the suitable fractional order of Caputo derivative and the parameters in the model.  相似文献   

11.
In this paper, a fast second‐order accurate difference scheme is proposed for solving the space–time fractional equation. The temporal Caputo derivative is approximated by ?L2 ‐1σ formula which employs the sum‐of‐exponential approximation to the kernel function appeared in Caputo derivative. The second‐order linear spline approximation is applied to the spatial Riemann–Liouville derivative. At each time step, a fast algorithm, the preconditioned conjugate gradient normal residual method with a circulant preconditioner (PCGNR), is used to solve the resulting system that reduces the storage and computational cost significantly. The unique solvability and unconditional convergence of the difference scheme are shown by the discrete energy method. Numerical examples are given to verify numerical accuracy and efficiency of the difference schemes.  相似文献   

12.
In this article, an efficient numerical method for linearized and nonlinear generalized time-fractional KdV-type equations is proposed by combining the finite difference scheme and Petrov–Galerkin spectral method. The scale and weight functions involved in generalized fractional derivative cause too much difficulty in discretization and numerical analysis. Fortunately, motivated by finite difference method for fractional differential equation on graded mesh, the stability and convergence of the constructed method are established rigorously. It is proved that the full discretization schemes of generalized time-fractional KdV-type equation is unconditionally stable in linear case. While for nonlinear case, it is stable under a CFL condition and for not small ϵ, coefficient of the high-order spatial differential term. In addition, the full discretization schemes with respect to linear and nonlinear cases respectively converge to the associated exact solutions with orders and , where τ, α, N and m accordingly indicate the time step size, the order of the fractional derivative, polynomial degree, and regularity of the exact solution. Numerical experiments are carried out to support the theoretical results.  相似文献   

13.
The main objective of the paper is to find the approximate solution of fractional integro partial differential equation with a weakly singular kernel. Integro partial differential equation (IPDE) appears in the study of viscoelastic phenomena. Cubic B‐spline collocation method is employed for fractional IPDE. The developed scheme for finding the solution of the considered problem is based on finite difference method and collocation method. Caputo fractional derivative is used for time fractional derivative of order α, . The given problem is discretized in both time and space directions. Backward Euler formula is used for temporal discretization. Collocation method is used for spatial discretization. The developed scheme is proved to be stable and convergent with respect to time. Approximate solutions are examined to check the precision and effectiveness of the presented method.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1565–1581, 2017  相似文献   

14.
In this paper, efficient numerical schemes are proposed for solving the water wave model with nonlocal viscous term that describe the propagation of surface water wave. By using the Caputo fractional derivative definition to approximate the nonlocal fractional operator, finite difference method in time and spectral method in space are constructed for the considered model. The proposed method employs known 5/2 order scheme for fractional derivative and a mixed linearization for the nonlinear term. The analysis shows that the proposed numerical scheme is unconditionally stable and error estimates are provided to predict that the second order backward differentiation plus 5/2 order scheme converges with order 2 in time, and spectral accuracy in space. Several numerical results are provided to verify the efficiency and accuracy of our theoretical claims. Finally, the decay rate of solutions is investigated.  相似文献   

15.
研究时间Caputo分数阶对流扩散方程的高效高阶数值方法.对于给定的时间分数阶偏微分方程,在时间和空间方向分别采用基于移位广义Jacobi函数为基底和移位Chebyshev多项式运算矩阵的谱配置法进行数值求解.这样得到的数值解可以很好地逼近一类在时间方向非光滑的方程解.最后利用一些数值例子来说明该数值方法的有效性和准确性.  相似文献   

16.
The model of pollution for a system of 3 lakes interconnected by channels is extended using Caputo‐Hadamard fractional derivatives of different orders αi∈(0,1), i=1,2,3. A numerical approach based on ln‐shifted Legendre polynomials is proposed to solve the considered fractional model. No discretization is needed in our approach. Some numerical experiments are provided to illustrate the presented method.  相似文献   

17.
In this paper, a high-order and fast numerical method is investigated for the time-fractional Black-Scholes equation. In order to deal with the typical weak initial singularity of the solution, we construct a finite difference scheme with variable time steps, where the fractional derivative is approximated by the nonuniform Alikhanov formula and the sum-of-exponentials (SOE) technique. In the spatial direction, an average approximation with fourth-order accuracy is employed. The stability and the convergence with second order in time and fourth order in space of the proposed scheme are religiously derived by the energy method. Numerical examples are given to demonstrate the theoretical statement.  相似文献   

18.
This paper introduces an approximate solution for Liouville‐Caputo variable order fractional differential equations with order 0 < α(t) ≤ 1 . The solution is adapted using a family of fractional‐order Chebyshev functions with unknown coefficients. These coefficients have been obtained by using an optimization approach based on minimax technique and the least pth optimization function. Several linear and nonlinear fractional‐order differential equations are discussed using the proposed technique for fixed and variable order fractional‐order derivatives. Moreover, the response of RC charging circuit with variable order fractional capacitor is studied for different cases. Several comparisons with related published techniques have been added to illustrate the accuracy of the proposed approach.  相似文献   

19.
In this paper, a fast high order difference scheme is first proposed to solve the time fractional telegraph equation based on the ℱℒ 2-1σ formula for the Caputo fractional derivative, which reduces the storage and computational cost for calculation. A compact scheme is then presented to improve the convergence order in space. The unconditional stability and convergence in maximum norm are proved for both schemes, with the accuracy order and , respectively. Difficulty arising from the two Caputo fractional derivatives is overcome by some detailed analysis. Finally, we carry out numerical experiments to show the efficiency and accuracy, by comparing with the ℒ 2-1σ method.  相似文献   

20.
Higher order non‐Fickian diffusion theories involve fourth‐order linear partial differential equations and their solutions. A quintic polynomial spline technique is used for the numerical solutions of fourth‐order partial differential equations with Caputo time fractional derivative on a finite domain. These equations occur in many applications in real life problems such as modeling of plates and thin beams, strain gradient elasticity, and phase separation in binary mixtures, which are basic elements in engineering structures and are of great practical significance to civil, mechanical, and aerospace engineering. The quintic polynomial spline technique is used for space discretization and the time‐stepping is done using a backward Euler method based on the L1 approximation to the Caputo derivative. The stability and convergence analysis are also discussed. The numerical results are given, which demonstrate the effectiveness and accuracy of the numerical method. The numerical results obtained in this article are also compared favorably well with the results of (S. S. Siddiqi and S. Arshed, Int. J. Comput. Math. 92 (2015), 1496–1518). © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 445–466, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号