首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
本文综述了晶态与非晶态两类高聚物的压电性,热释电性和铁电性。这些现象近年来研究得愈来愈广泛。文中以聚氯乙烯作为非晶态高聚物的例子;以PVDF及其共聚物,还有尼龙11作为晶态高聚物的例子。按照偶极子模型,高聚物一般假定需具备四个条件,就可显示出较大的压电性,热释电性和铁电性。本文探讨了上述高聚物的结构与性能,这些对识别材料是很重要的。最后,列举了PVDF及其它材料的压电常数,热释电系数和介电常数,以供读者参考。  相似文献   

2.
This study analyses the possibility of reprocessing used poly(vinylidene fluoride), PVDF, maintaining the main properties critical for its use in piezoelectric sensor/actuator applications. The influence of multiple reprocessing cycles of PVDF on crystallinity and ß-phase content fundamental for its electroactive behaviour, was studied. Nine reprocessing cycles were completed and it was found that the material preserved the characteristics required for its use as piezoelectric polymer without significant degradation.  相似文献   

3.
The obtention of reliable and high performance piezoelectric ceramics for uses at high temperatures is still an open issue in the field of electroceramics. The materials used nowadays for such applications present limitations due to different causes: low piezoelectric coefficients, difficulties in processing that lead to the necessary use of single crystals, high cost of raw materials and more. In this sense, an increasing interest in materials with the so-called Aurivillius-type structure has occurred during recent years, due to their relatively high piezoelectric coefficients and high ferro–paraelectric phase transition temperature. However, some difficulties must be overcome, such as processing for obtaining highly dense ceramics and determining their real piezoelectric behaviour at high temperature. In this work, a review of the processing and properties of ceramics with this structure is shown. Effects of the use of precursors obtained by an alternative route mechanical activation on the microstructure are explained. A complete piezoelectric characterization at working temperatures (>300 °C), barely found in the literature, is also shown. The effects of trapped charges in the dielectric permittivity and in the piezoelectric radial resonance are also discussed.  相似文献   

4.
The present article deals with current trends in spinel based modified polymer composite materials for applications in the field of electromagnetic shielding. The interaction between the various spinel based materials and polymers is an emerging field of studies among various researchers. The thermal stability, electrical conductivity, the bonding between the metal ferrites and the polymer plays an important role in the interaction of electromagnetic radiation. These properties also effect the mechanism of the EM waves for the shielding applications. Considering these all properties, polyaniline appears to be an suitable polymer for electromagnetic shielding applications. Polyaniline composites not only reinforced the properties of spinel materials but also enhanced the dielectric properties of the composite material. When carbon based materials such as graphene, graphene oxide and CNT was added along with spinel material in polyaniline based composite, they accelerate the electrical properties and enhances the shielding applications. In this paper the various synthesis methods, fabrication methods of polyaniline, and the properties of polyaniline based composites have been discussed. In addition, the various salient features and futuristic challenges of polyaniline based composite materials for EMI shielding applications were attempted to make a well equipped material for radar absorption.  相似文献   

5.
Structures modification of fibers has been attracting significant attention in various fields and applications. Among different techniques of fabricating ultrathin fibers, electrospinning is the most commonly adopted method because of the ease of forming fibers with a wide range of properties and its exceptional advantages, such as the ability to spin into different shapes and sizes, as well as the adaptable porosity of electrospun fiber webs. The crimped structure has been attracting the attention of scientific researchers owing to its unique properties (eg, spring‐like behavior, supreme strain, remarkable specific surface area, good piezoelectric properties, excellent biological properties, and so on). Therefore, this study summarizes a review of the strategies and methods, reported so far, of generating electrospun crimped ultrathin fibers of various polymers. The review focuses on the polymer types, formation methods, characterizations, and applications of the electrospun crimped ultrathin fibers. We believe this work can serve as an important reference for the materials, strategies, and applications of crimped fibers.  相似文献   

6.
Polyvinylidene difluoride (PVDF) is one of the most widely used piezoelectric materials in micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS) due to its excellent properties. Its applications range from biological to electric devices, such as an artificial hip joint, a microgripper, and a force sensor. It is critical to understand friction, adhesion, and wear mechanisms of this material. In this study, effect of piezoelectricity and lubricant with electric field on tribological properties was investigated, using poled and unpoled PVDF. To understand the tribological properties at nano- and macroscales, scale effect was also studied using an AFM and a tribometer. Relevant mechanisms are discussed.  相似文献   

7.
Polymorphism in crystals is known since 1822 and the credit goes to Mitscherlich who realized the existence of different crystal structures of the same compound while working with some arsenate and phosphate salts. Later on, this phenomenon was observed also in organic crystals. With the advent of different technologies, especially the easy availability of single crystal XRD instruments, polymorphism in crystals has become a common phenomenon. Almost 37 % of compounds (single component) are polymorphic to date. As the energies of the different polymorphic forms are very close to each other, small changes in crystallization conditions might lead to different polymorphic structures. As a result, sometimes it is difficult to control polymorphism. For this reason, it is considered to be a nuisance to crystal engineering. It has been realized that the property of a material depends not only on the molecular structure but also on its crystal structure. Therefore, it is not only of interest to academia but also has widespread applications in the materials science as well as pharmaceutical industries. In this review, we have discussed polymorphism which causes significant changes in materials properties in different fields of solid-state science, such as electrical, magnetic, SHG, thermal expansion, mechanical, luminescence, color, and pharmaceutical. Therefore, this review will interest researchers from supramolecular chemistry, materials science as well as medicinal chemistry.  相似文献   

8.
《先进技术聚合物》2018,29(6):1568-1585
Ever since the discovery of polymer composites, its potential has been anticipated for numerous applications in various fields such as microelectronics, automobiles, and industrial applications. In this paper, we review filler reinforced polymer composites for its enormous potential in microelectronic applications. The interface and compatibility between matrix and filler have a significant role in property alteration of a polymer nanocomposites. Ceramic reinforced polymeric nanocomposites are promising candidate dielectric materials for several micro‐ and nano‐electronic devices. Because of its synergistic effect like high thermal conductivity, low thermal expansion, and dielectric constant of ceramic fillers with the polymer matrix, the resultant nanocomposites have high dielectric breakdown strength. The thermal and dielectric properties are discussed in the view of filler alignment techniques and its effect on the composites. Furthermore, the effect of various surface modified filler materials in polymer matrix, concepts of network forming using filler, and benefits of filler alignment are also discussed in this work. As a whole, this review article addresses the overall view to novice researchers on various properties such as thermal and dielectric properties of polymer matrix composites and direction for future research to be carried out.  相似文献   

9.
The conducting materials of carbon black, iron powder and carbon nanotube were doped into poly(vinylidene fluoride) (PVDF) and piezoelectric lead zirconate titanate (PZT) ceramics composite powder to prepare piezoelectric composite. The result showed that an appropriate doping phase could improve the polarization and piezoelectric properties of composite materials. Independently from the chemical nature of the doping phase, when its amount was equal to 0.6%, the piezoelectric voltage constant of piezoelectric composite reached the maximum value. When the added quantities, the power storage capacities of piezoelectric composites reached the peak value when the amount of added carbon black or iron powder was 0.6% and that of carbon nanotube was 0.9%.  相似文献   

10.
As emerging two-dimensional materials, metal-organic framework(MOF) nanosheet composites possess many unique physical and chemical properties, thus being expected to be widely applied in gas separation and adsorption, energy conversion and storage, heterogeneous catalysis, sensing as well as biomedicine. In this review, we first introduce the methods for integrating MOF nanosheets with other materials to prepare multifunctional composites. Next, the applications of MOF nanosheet composites in ve...  相似文献   

11.
New advances in the sol?Cgel processing of ferroelectric ceramic powders and thin films and recently, scientific and technological interests in ferroelectric ceramics have been focused particularly on thin films. This is mainly due to their great potential applications in integrated electronics as passive components and as non-volatile ferroelectric memories, optoelectronic devices, etc. Special attention has been paid to the effects of the microstructure and composition on the piezoelectric properties of ferroelectric ceramic powders and thin films, and various characterization techniques are reported. This paper introduces the basic principles governing ferroelectricity and lists the various materials which exhibit these properties. The processing of ferroelectric ceramics and thin films in general and sol?Cgel processing in particular, with some examples are described. Finally, important applications of ferroelectric films and microstructure examination as well as powerful techniques are briefly discussed.  相似文献   

12.
Polymers are crucial constituents of modern electronic devices. They can be used in their pristine, composite or nanocomposite forms for several domestic and industrial applications with innumerable unique possibilities. Polymer nanocomposites have gained wide theoretical interest and numerous practical applications in diverse fields of science and technology as they bestow the materials not only with virtuous processability but also with exceptional functionalities. It is evidenced that the electrical conductance of polymer nanocomposite is governed by the conductive filler networks within the polymer matrix. Hence, insignificant variation in the conductive networks can result in noteworthy variations in the output electric signal of polymer nanocomposite. Exploiting this stimuli-responsive performance of conductive networks to the physical parameters, polymer nanocomposites can be harnessed to fabricate novel sensitive sensors to detect vital physical parameters viz.strain/stress, pressure, temperature, solvent or vapor. Technical and phenomenological studies on polymer nanocomposites are still enduring.Advanced explanations are being sought but the mechanisms governing the formation of several polymer nanocomposites are still topics of debate in the material science community. Their in-depth investigation requires copious scientific work. This review analytically sketches the synthesis, microstructures, physiochemical properties and the underlying mechanisms for stimuli-responsiveness to the physical parameters of the polymer nanocomposites as well as their applications in various sensitive sensors and detectors. Thus, it became evocative for this review to focus on their processing methodologies, physiochemical physiognomies, classification and probable potentials of polymer nanocomposites.This review primarily presents the current literature survey on polymer composites and the gap areas in the study encourages the objective of the present review article. Finally, the status, perspectives and the advantages of specific polymer nanocomposites at present are summarized. The attention of this review is drawn to the present trends, challenges and future scope in this field of study. Finally, the vital concern and future challenge in utilizing the stimulus responsive behavior of polymer nanocomposites to design versatile sensors for real time applications are elaborately discussed.  相似文献   

13.
The supramolecular crosslinking of polymer chains in water by specific, directional and dynamic non-covalent interactions has led to the development of novel supramolecular polymeric hydrogels. These aqueous polymeric networks constitute an interesting class of soft materials exhibiting attractive properties such as stimuli-responsiveness and self-healing arising from their dynamic behaviour and that are crucial for a wide variety of emerging applications. We present here a critical review summarising the formation of dynamic polymeric networks through specific non-covalent interactions, with a particular emphasis on those systems based on host-guest complex formation, as well as the characterisation of their physical characteristics. Aqueous supramolecular chemistry has unlocked a versatile toolbox for the design and fine-tuning of the material properties of these hydrogels (264 references).  相似文献   

14.
Artificial muscles triggered by light are of great importance, especially for the development of non‐contact and remotely controlled materials. Common materials for synthesis of photoinduced artificial muscles typically rely on polymer‐based photomechanical materials. Herein, we are able to prepare artificial muscles using a mixed‐matrix membrane strategy to incorporate photomechanical molecular crystals with connective polymers (e.g. PVDF). The formed hybrid materials inherit not only the advantages of the photomechanical crystals, including faster light response, higher Young's modulus and ordered structure, but also the elastomer properties from polymers. This new type of artificial muscles demonstrates various muscle movements, including lifting objects, grasping objects, crawling and swimming, triggered by light irradiation. These results open a new direction to prepare light‐driven artificial muscles based on molecular crystals.  相似文献   

15.
This review article provides an overview of the properties and methods for synthesis of BiSI and Bi13S18I2 semiconductor compounds in the form of thin films, powders and crystals, as well as their application in photovoltaic and photoelectrochemical devices. Over the past decade, the results of extensive and versatile research on the structure, properties, functionality and potential applications of bismuth-containing semiconductor materials have accumulated. Bismuth halides and chalcohalides are a developing class of materials that have a small band gap, high chemical stability, effective absorbing properties when absorbing light radiation, which causes the registration of high quantum efficiency values and the possibility of their use in photoelectrochemical processes and photovoltaic solid-state elements. This review presents the results of recent developments and basic approaches aimed at obtaining various multicomponent compounds based on bismuth and improving photoelectrochemical properties. Various structures which demonstrate the importance of thin films based on bismuth compounds are also described. The key problems related to the synthesis and development of these materials is presented. This review will provide a deeper understanding and determine the preferred direction for the synthesis of bismuth-containing thin films for energy and environmental applications.  相似文献   

16.
可降解聚合物/层状硅酸盐纳米复合材料的研究进展   总被引:1,自引:0,他引:1  
易菊珍  张黎明 《高分子通报》2006,171(3):31-36,64
作为一类性能优良的环保功能材料,生物降解性聚合物/层状硅酸盐(BPLS)纳米复合材料正日益引起人们的关注。本文综述了BPLS纳米复合材料的制备途径、结构表征方法及其性能特点,同时对其应用前景作了展望。  相似文献   

17.
聚合物压电智能材料研究新进展   总被引:7,自引:0,他引:7  
聚合物压电材料已经有近 4 0的历史 ,近年来由于被用于智能材料而引起更多研究工作者的关注。本文介绍了聚合物产生压电性能的机制、分类 ,判断、评价聚合物压电性能的基本参数和指标 ,分析了不同形态聚合物压电材料的结构要求及微观机理 ,介绍了材料取向、极化机制与方法。讨论了其主要表征和基本模拟方法 ,并对压电聚合物材料的优良性能、应用与发展前景作出了简要说明  相似文献   

18.
19.
酞菁拥有高度离域的二维18π电子共轭体系、易于调变的分子结构、优良的热和化学稳定性和易于处理加工等特点,可以在很宽的范围内剪裁它们的物理、光电和化学参数,其潜在的巨大应用价值已受到科学与企业界的广泛关注和研究。与[60]富勒烯一样,酞菁分子也可以通过共价键合的方式引入到高分子主链或侧链形成不同类型的高分子,亦可得到诸如酞菁网状高分子和树枝状酞菁大分子等高分子材料;与适宜的高分子材料掺杂或共混能形成含酞菁的高分子复合材料。本文详细地介绍了近年来酞菁高分子修饰与光电性质研究进展。  相似文献   

20.
We study the effect of onium salts (benzyl triphenyl phosphonium chloride, BTPC; tetrabutyl ammonium perchlorate, TAP) on the crystallization of polyvinylidene fluoride (PVDF) from a melt. The β phase of PVDF crystals is polar and has excellent piezoelectric properties, in contrast to the nonpolar α phase. Processing of PVDF results in the formation of predominantly α‐phase crystals. Different amounts of the onium salts were melt‐mixed into PVDF using a micro‐compounder. PVDF containing about 0.5 wt % of BTPC is found to have predominantly β‐phase crystals in compression molded PVDF films, with an increase in the melting temperature by about 7 °C. A significant increase in the toughness of PVDF is obtained by the addition of BTPC. Polarizing microscopy indicates that the onium salts act as nucleating agents and result in significant reduction in spherulite size. Similar results were observed for samples prepared with TAP. The results of the study indicate a facile method for producing β‐phase PVDF films. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1339–1344, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号