首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The nonlinear optical molecule N,N-bis(4-bromobutyl)-4-nitrobenzenamine was synthesized. The ground state dipole moment was determined by the Debye-Guggenheim method. A solvent mixture of acetonitrile and toluene was used for the solvatochromic determination of the excited state dipole moment. Excited state has a high value for the dipole moment which indicated a higher degree of charge transfer from the donor to the acceptor moiety on excitation by light. The first hyperpolarizability (beta(ijk)) of the molecule was evaluated assuming the two level model of the first hyperpolarizability.  相似文献   

2.
The ground states of dimethyl siloxane under different intense electric fields ranging from - 0. 04 to 0. 04 a. u. are optimized using density functional theory DFT / B3P86 at 6-311 ++ G(d,p)level. The excitation energies and oscillator strengths under the same intense applied electric fields are calculated employing the revised hybrid CIS-DFT method. The result shows that the electronic state,molecular geometry,total energy,dipole moment and excitation energy are strongly dependent on the field strength and behave asymmetry to the direction of the applied electric field. As the electric field changes from - 0. 04 to 0. 04 a. u. ,the bond length of Si-O increases whereas the bond length of Si-C decreases because of the charge transfer induced by the applied electric field. The dipole moment of the ground state decreases linearly with the applied field strength. However,the dipole moment of molecule changes from positive to negative as the inverse electric field increase to - 0. 03 a. u. Further increase of the inverse electric field results in an increase of the total energy of the molecule. The dependence of the calculated excitation energies on the applied electric field strength is fitting well to the relationship proposed by Grozema. The excitation energies of the first five excited states of dimethyl siloxane decrease as the applied electric filed increases because the energy gap between the HOMO and LUMO become close with the field,which shows that the molecule is easy to be excited under electric field and hence can be easily dissociated.  相似文献   

3.
采用密度泛函B3P86方法在6-311++G(d, p)基组水平上优化得到了沿分子轴方向不同外电场(0-0.04 a.u.)作用下, 甲基乙烯基硅酮分子的基态电子状态、几何结构、电偶极矩和分子总能量. 在优化构型下利用杂化CIS-DFT方法(CIS-B3P86)研究了同样外电场条件下对甲基乙烯基硅酮的激发能和振子强度的影响. 计算结果表明, 分子几何构型与电场大小呈现强烈的依赖关系, 分子偶极矩μ随电场的增加先减小后急剧增大. 电场为零时, 分子总能量为-483.5532137 a.u., 随着电场增加, 能量升高, 在F=0.02 a.u.时达到最大值-483.5393952 a.u., 此后, 继续增大电场系统总能量则开始降低. 激发能随电场增加急剧减小, 表明在电场作用下, 分子易于激发和离解.  相似文献   

4.
Porphyrin and fullerene donor-acceptor complexes have been extensively studied for their photo-induced charge transfer characteristics. We present the electronic structure of ground states and a few charge transfer excited states of four cofacial porphyrin-fullerene molecular constructs studied using density functional theory at the all-electron level using large polarized basis sets. The donors are base and Zn-tetraphenyl porphyrins and the acceptor molecules are C(60) and C(70). The complexes reported here are non-bonded with a face-to-face distance between the porphyrin and the fullerene of 2.7 to 3.0 A?. The energies of the low lying excited states including charge transfer states calculated using our recent excited state method are in good agreement with available experimental values. We find that replacing C(60) by C(70) in a given dyad may increase the lowest charge transfer excitation energy by about 0.27 eV. Variation of donor in these complexes has marginal effect on the lowest charge transfer excitation energy. The interfacial dipole moments and lowest charge transfer states are studied as a function of face-to-face distance.  相似文献   

5.
Electronic structure and photophysical properties of 2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine are studied theoretically with quantum chemical methods as well as 2D site and 3D cube representations. The theoretical results reveal that the first excited state is an intramolecular charge transfer excited state. The change in dipole moment for the first excited state of the excitation is fitted, and the calculated result the change in dipole moment ¢1=6.40 D is consistent with the experimental result ¢1=6.90 D. The polarizability is also fitted. The large changes in dipole moment and the polarizability of the excitation show that S1 is of large nonlinear optical (NLO) effect. The NLO will promote efficient two-photon-absorption cross sections. The excited state properties of dpbt with different external electronic fields are also discussed theoretically.  相似文献   

6.
The electronic ground and excited-state structures of the betaine dye molecule pyridinium- N-phenoxide [4-(1-pyridinio)phenolate] are investigated both in the gas phase and in aqueous solution, using the reference interaction site model self-consistent-field (RISM-SCF) procedure within a CASSCF framework. We obtain the total free energy profiles in both the ground and excited states with respect to variation in the torsion angle between the phenoxide and pyridinium rings. We analyze the effect of solvent on the variation of the solute dipole moment and on the charge transfer character in the excited state. In the gas phase, it is shown that the potential energy profile in the excited-state decreases monotonically toward a perpendicular ring orientation and the dipole moment decreases along with decreasing charge localization. In water, the free energy surface for twisting is better characterized as nearly flat along the same coordinate for sterically accessible angles. These results are analyzed in terms of contributions of the solvation free energy, the solute electronic energy, and their coupling. Correspondingly, the dependence of the charge transfer character on solute geometry and solvation are analyzed, and the important roles in the excitation and subsequent relaxation processes for the betaine dye are discussed. It is found that there is considerable solute electronic reorganization associated with the evolution of solvation in the excited state, and it is suggested that this reorganization may contribute significantly to the early time evolution of transient spectra following photoexcitation.  相似文献   

7.
In the present work we have studied the accuracy of excitation energies calculated from spin-flip transitions with a formulation of time-dependent density functional theory based on a noncollinear exchange-correlation potential proposed in a previous study. We compared the doublet-doublet excitation energies from spin-flip transitions and ordinary transitions, calculated the multiplets splitting of some atoms, the singlet-triplet gaps of some diradicals, the energies of excited quartet states with a doublet ground state. In addition, we attempted to calculate transition energies with excited states as reference. We compared the triplet excitation energies and singlet-triplet separations of the excited state from spin-flip and ordinary transitions. As an application, we show that using excited quartet state as reference can help us fully resolve excited states spin multiplets. In total the obtained excitation energies calculated from spin-flip transitions agree quite well with other theoretical results or experimental data.  相似文献   

8.
The origin of the dual fluorescence of DMABN (dimethylaminobenzonitrile) and other benzene derivatives is explained by a charge transfer model based on the properties of the benzene anion radical. It is shown that, in general, three low-lying electronically excited states are expected for these molecules, two of which are of charge transfer (CT) character, whereas the third is a locally excited (LE) state. Dual fluorescence may arise from any two of these states, as each has a different geometry at which it attains a minimum. The Jahn-Teller induced distortion of the benzene anion radical ground state helps to classify the CT states as having quinoid (Q) and antiquinoid (AQ) forms. The intramolecular charge transfer (ICT) state is formed by the transfer of an electron from a covalently linked donor group to an anti-bonding orbital of the pi-electron system of benzene. The change in charge distribution of the molecule in the CT states leads to the most significant geometry change undergone by the molecule which is the distortion of the benzene ring to a Q or AQ structure. As the dipole moment is larger in the perpendicular geometry than in the planar one, this geometry is preferred in polar solvents, supporting the twisted intramolecular charge transfer (TICT) model. However, in many cases the planar conformation of CT excited states is lower in energy than that of the LE state, and dual fluorescence can be observed also from planar structures.  相似文献   

9.
This work reported an investigation on the excited state and electronic transfer excitation of cuprous (I) bis-phenanthrouline complex by density functional theory. The intramolecular charge transfer from central metal to ligand (MLCT) during the excitation was observed. The transfer direction and degree were discussed on the basis of analyzing the Mulliken charge. The structural distortion caused by the charge transfer in the excited state was confirmed. The excited state was found having the characters similar with Cu(II) complex both in electronic and geometrical properties. The large structural distortion found between ground state and excited state could lead to a decrease in the lifetime of excited state as well as a non-radiative decay. The excitation energies and oscillator strengths of cuprous (I) bis-phenanthrouline were derived using time-dependent density functional method. The values of excitation energies are good agreement with the results of the experimental measuring.  相似文献   

10.
Propagator methods provide a direct approach to energies and transition moments for (generalized) electronic excitations from the ground state, but they do not usually allow one to determine excited state wave functions and properties. Using a specific intermediate state representation (ISR) concept, we here show how this restriction can be overcome in the case of the algebraic-diagrammatic construction (ADC) propagator approach. In the ISR reformulation of the theory the basic ADC secular matrix is written as a representation of the Hamiltonian (or the shifted Hamiltonian) in terms of explicitly constructable states, referred to as intermediate (or ADC) states. Similar intermediate state representations can be derived for operators other than the Hamiltonian. Together with the ADC eigenvectors, the intermediate states give rise to an explicit formulation of the excited wave functions and allow one to calculate physical properties of excited states as well as transition moments for transitions between different excited states. As for the ground-state excitation energies and transition moments, the ADC excited state properties are size consistent so that the theory is suitable for applications to large systems. The established hierarchy of higher-order [ADC(n)] approximations, corresponding to systematic truncations of the IS configuration space and the perturbation-theoretical expansions of the ISR matrix elements, can readily be extended to the excited state properties. Explicit ISR matrix elements for arbitrary one-particle operators have been derived and coded at the second-order [ADC(2)] level of theory. As a first computational test of the method we have carried out ADC(2) calculations for singlet and triplet excited state dipole moments in H(2)O and HF, where comparison to full CI results can be made. The potential of the ADC(2) method is further demonstrated in an exploratory study of the excitation energies and dipole moments of the low-lying excited states of paranitroaniline. We find that four triplet states, T1-T4, and two singlet states, S1 and S2, lie (vertically) below the prominent charge transfer (CT) excitation, S3. The dipole moment of the S3 state (17.0D) is distinctly larger than that of the corresponding T3 triplet state (11.7D).  相似文献   

11.
聚酰亚胺的电荷转移研究   总被引:2,自引:0,他引:2  
用量子化学从头计算方法,选用模型化合物对二种不同聚酰亚胺结构单元的基态和激发态的电荷分布、偶极矩和跃迁能进行了研究,并通过对聚酰亚胺荧光光谱的测定,探讨了二种聚酰亚胺形成电荷转移络合物的差异.结果表明,二种酰亚胺环在基态时均已发生了较大的电荷转移,但在激发态,只有4,4′-二氨三苯胺构成的酰亚胺环才发生进一步的电荷转移.  相似文献   

12.
The synthesis, photophysical properties, protonation, and metal-ion coordination features of a family of nine aniline-based symmetrical squaraine derivatives are reported. The squaraine scaffold displays very attractive photophysical properties for a signalling unit. These dyes show absorption and weakly Stokes-shifted, mirror-image-shaped emission bands in the visible spectral range and there are no hints of multiple emission bands. The mono-exponential fluorescence decay kinetics observed for all the derivatives indicate that only one excited state is involved in the emission. These data stress the interpretation that squaraines can be regarded as polymethine-type dyes. From a coordination chemistry point of view, the squaraines possess four potential binding sites; that is, two nitrogen atoms from the anilino groups and two oxygen atoms from the central C(4)O(2) four-membered ring. These coordination sites are part of a cross-conjugated pi-system and coordination events with protons or certain metal ions affect the electronic properties of the delocalised pi-system dramatically, resulting in a rich modulation of the colour of the squaraines. The absorption band at around 640 nm is blue-shifted when coordination at the anilino nitrogen atoms occurs, whereas coordination to the C(2)O(4) oxygen atoms results in the development of red-shifted bands. Addition of more than one equivalent of protons or metal cations could additionally entail mixed N,O- or N,N-coordinated complexes, manifested in the development of a broad band at 480 nm or complete bleaching in the visible range, respectively. Analysis of the spectrophotometric titration data with HYPERQUAD yielded the macroscopic and microscopic stability constants of the complexes. Theoretical modelling of the various protonated species by molecular mechanics methods and consideration of some of the title dyes within the framework of molecular chemosensing and molecular-scale "logic gates" complement this contribution.  相似文献   

13.
Structure, photoabsorption and excited states of two representative conformations obtained from molecular dynamics (MD) simulations of a doubly-linked porphyrin-fullerene dyad DHD6ee are studied by using both DFT and wavefunction based methods. Charge transfer from the donor (porphyrin) to the acceptor (fullerene) and the relaxation of the excited state are of special interest. The results obtained with LDA, GGA, and hybrid functionals (SVWN, PBE, and B3LYP, respectively) are analyzed with emphasis on the performance of used functionals as well as from the point of view of their comparison with wavefunction based methods (CCS, CIS(D), and CC2). Characteristics of the MD structures are retained in DFT optimization. The relative orientation of porphyrin and fullerene is significantly influencing the MO energies, the charge transfer (CT) in the ground state of the dyad and the excitation of ground state CT complex (g-CTC). At the same time, the excitation to the locally excited state of porphyrin is only little influenced by the orientation or cc distance. TD-DFT underestimates the excitation energy of the CT state, however for some cases (with relatively short donor-acceptor separations), the use of a hybrid functional like B3LYP alleviates the problem. Wavefunction based methods and CC2 in particular appear to overestimate the CT excitation energies but the inclusion of proper solvation models can significantly improve the results.  相似文献   

14.
15.
A donor acceptor substituted aromatic system 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid (DMAPPDA) has been synthesized and its spectral properties have been explored on the basis of steady state absorption and fluorescence spectroscopy. Spectral features point largely towards a possible occurrence of photoinduced intramolecular charge transfer process from the donor NMe2 group to the acceptor acid group. Solvent dependency of the large Stokes' shifted emission band and the calculated large excited state dipole moment support the polar character of the charge transfer excited state. Quantum yield calculations and effect of addition of acid and base on the steady state spectra were also performed to further scrutinize the excited state CT character.  相似文献   

16.
A series of N-bonded donor-acceptor derivatives of phenothiazine containing benzene (PHPZ), anisole (ANPZ), pyridine (PYPZ), naphthalene (NAPZ), acetophenone (PEPZ), and benzonitrile (BNPZ) as an electron acceptor was synthesized. Their photophysical properties were investigated in solvents of different polarities by absorption and emission techniques. These studies clearly reveals the existence of an intramolecular charge transfer (ICT) excited state in the latter four compounds. The solvent dependent Stokes shift values were analyzed by the modified Lippert-Mataga equation to obtain the excited state dipole moment values. The large excited state dipole moment suggests that the full electron transfer takes place in the A-D systems. The obtained values of redox potentials indicate that both subunits of all the A-D molecules studied interact very weakly in the ground states. The results obtained from the analysis of the CT fluorescence spectra confirm that the small conformational changes accompanying excited state charge transfer, the twist angle between the donor and acceptor moieties in the excited 1CT state seems to be similar to that in the ground state.  相似文献   

17.
The one-photon absorption (OPA) properties of donor-pi-bridge-acceptor-pi-bridge-donor (D-pi-A-pi-D)-type 2,1,3-benzothiadiazoles (BTD) were studied with two dimensional (2D) site and three dimensional (3D) cube representations. The 2D site representation reveals the electron-hole coherence on electronic state transitions from the ground state. The 3D representation shows the orientation of transition dipole moment with transition density, and the charge redistribution on the excited states with charge difference density. In this paper, we further developed the 2D site and 3D cube representations to investigate the two-photon absorption (TPA) properties of D-pi-A-pi-D-type BTD on electronic transitions between excited states. With the new developed 2D site and 3D cube representations, the orientation of transition dipole moment, the charge redistribution, and the electron-hole coherence for TPA of D-pi-A-pi-D-type BTD on electronic state transitions between excited states were visualized, which promote deeper understanding to the optical and electronic properties for OPA and TPA.  相似文献   

18.
Preferential solvation of a solvatochromic probe has been studied in binary mixtures comprising of a non-protic and a protic solvent. The non-protic solvents employed are carbon tetrachloride (CCl(4)), acetonitrile (AcN) and N,N-dimethyl formamide (DMF) and the protic solvents are methanol (MeOH) and ethanol (EtOH). The probe molecule exhibits different spectroscopic characteristics depending upon the properties of the solubilizing media. The observed spectral features provide an indication of the microenvironment immediately surrounding the probe. Solvatochromic shifts of the ground and excited states of the probe were analysed by monitoring the charge transfer absorption band and the fluorescence emission spectra in terms of the solute-solvent and solvent-solvent interactions. Fluorescence emission spectra show the dual emission due to excited state proton transfer nature of the probe molecule. The effect of solvent and the excitation energy on dual emission are also studied. The observed magnitude of the Stokes shift in the above solvents has been used to deduce experimentally the dipole moment ratio of the probe molecule for the excited state to the ground state. The dipole moment of excited state is higher than the ground state.  相似文献   

19.
Time-dependent Hartree-Fock theory has been used to study the electronic optical response of a series of linear polyene cations (+1 and +2) in strong laser fields. The interaction of ethylene, butadiene, and hexatriene, with pulsed and CW fields corresponding to 8.75 x 10(13) W/cm(2) and 760 nm, have been calculated using the 6-31G(d,p) basis set. Nonadiabatic processes including nonlinear response of the dipole moment to the field and non-resonant energy deposition into excited states were more pronounced for the monocations in comparison with dications. For a given charge state and geometry, the nonadiabatic effects in the charge distribution and instantaneous dipole increased with the length of the polyene. For pulsed fields, the instantaneous dipole continued to oscillate after the field returned to zero and corresponded to a non-resonant electronic excitation involving primarily the lowest electronic transition. For a given molecule and fixed charge state, the degree of nonadiabatic coupling and excitation was greater for geometries with lower excitation energies.  相似文献   

20.
从分子水平进行电子转移,电荷分离的研究是十分重要的,它不仅是自然界光合作用的基本过程,也是现代高新技术中的一个关键问题。近年来分子内含电子给体与电子受体的D-A化合物一直引起人们的极大兴趣。这些化合物能发生光致分子内电子转移,使其激发态分子的偶极矩远大于基态,它们的发射光谱对介质的粘度及极性十分敏感,随分子结构的变化而变化,展现出特有的光电性质,可利用作为非线性光学材料、光电转换材料以及荧光探针等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号