首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method is presented for representing curved boundaries for the solution of the Navier–Stokes equations on a non-uniform, staggered, three-dimensional Cartesian grid. The approach involves truncating the Cartesian cells at the boundary surface to create new cells which conform to the shape of the surface. We discuss in some detail the problems unique to the development of a cut cell method on a staggered grid. Methods for calculating the fluxes through the boundary cell faces, for representing pressure forces and for calculating the wall shear stress are derived and it is verified that the new scheme retains second-order accuracy in space. In addition, a novel “cell-linking” method is developed which overcomes problems associated with the creation of small cells while avoiding the complexities involved with other cell-merging approaches. Techniques are presented for generating the geometric information required for the scheme based on the representation of the boundaries as quadric surfaces. The new method is tested for flow through a channel placed oblique to the grid and flow past a cylinder at Re=40 and is shown to give significant improvement over a staircase boundary formulation. Finally, it is used to calculate unsteady flow past a hemispheric protuberance on a plate at a Reynolds number of 800. Good agreement is obtained with experimental results for this flow.  相似文献   

2.
柏劲松  陈森华  李平 《计算物理》2003,20(2):95-101
采用欧拉网格自适应算法捕捉多介质流界面,获得了高精度界面特征,对不同物质引入不同位标函数跟踪界面运动,将位标函数方程与流体动力学方程非耦合求解,在笛卡尔坐标系中运用二阶精度有限体积算法,在保持流场守恒条件下,采用多层网格级对笛卡尔网格嵌套细化,实现了多介质流物质界面的高精度自适应跟踪.方法逻辑简单,大大节省了CPU时间,且能够对局部参数急剧变化的流场(如激波)进行自适应跟踪.  相似文献   

3.
The present work details the Elastoplast (this name is a translation from the French “sparadrap”, a concept first applied by Yves Morchoisne for Spectral methods [1]) Discontinuous Galerkin (EDG) method to solve the compressible Navier–Stokes equations. This method was first presented in 2009 at the ICOSAHOM congress with some Cartesian grid applications. We focus here on unstructured grid applications for which the EDG method seems very attractive. As in the Recovery method presented by van Leer and Nomura in 2005 for diffusion, jumps across element boundaries are locally eliminated by recovering the solution on an overlapping cell. In the case of Recovery, this cell is the union of the two neighboring cells and the Galerkin basis is twice as large as the basis used for one element. In our proposed method the solution is rebuilt through an L2 projection of the discontinuous interface solution on a small rectangular overlapping interface element, named Elastoplast, with an orthogonal basis of the same order as the one in the neighboring cells. Comparisons on 1D and 2D scalar diffusion problems in terms of accuracy and stability with other viscous DG schemes are first given. Then, 2D results on acoustic problems, vortex problems and boundary layer problems both on Cartesian or unstructured triangular grids illustrate stability, precision and versatility of this method.  相似文献   

4.
We present a parallel, two-dimensional, grid-based algorithm for solving a level-set function PDE that arises in Detonation Shock Dynamics (DSD). In the DSD limit, the detonation shock propagates at a speed that is a function of the curvature of the shock surface, subject to a set of boundary conditions applied along the boundaries of the detonating explosive. Our method solves for the full level-set function field, φ(x, y, t), that locates the detonation shock with a modified level-set function PDE that continuously renormalises the level-set function to a distance function based off of the locus of the shock surface, φ(x, y, t)=0. The boundary conditions are applied with ghost nodes that are sorted according to their connectivity to the interior explosive nodes. This allows the boundary conditions to be applied via a local, direct evaluation procedure. We give an extension of this boundary condition application method to three dimensions. Our parallel algorithm is based on a domain-decomposition model which uses the Message-Passing Interface (MPI) paradigm. The computational order of the full level-set algorithm, which is O(N 4), where N is the number of grid points along a coordinate line, makes an MPI-based algorithm an attractive alternative. This parallel model partitions the overall explosive domain into smaller sub-domains which in turn get mapped onto processors that are topologically arranged into a two-dimensional rectangular grid. A comparison of our numerical solution with an exact solution to the problem of a detonation rate stick shows that our numerical solution converges at better than first-order accuracy as measured by an L1-norm. This represents an improvement over the convergence properties of narrow-band level-set function solvers, whose convergence is limited to a floor set by the width of the narrow band. The efficiency of the narrow-band method is recovered by using our parallel model.  相似文献   

5.
In this work, the local grid refinement procedure is focused by using a nested Cartesian grid formulation. The method is developed for simulating unsteady viscous incompressible flows with complex immersed boundaries. A finite-volume formulation based on globally second-order accurate central-difference schemes is adopted here in conjunction with a two-step fractional-step procedure. The key aspects that needed to be considered in developing such a nested grid solver are proper imposition of interface conditions on the nested-block boundaries, and accurate discretization of the governing equations in cells that are with block-interface as a control-surface. The interpolation procedure adopted in the study allows systematic development of a discretization scheme that preserves global second-order spatial accuracy of the underlying solver, and as a result high efficiency/accuracy nested grid discretization method is developed. Herein the proposed nested grid method has been widely tested through effective simulation of four different classes of unsteady incompressible viscous flows, thereby demonstrating its performance in the solution of various complex flow–structure interactions. The numerical examples include a lid-driven cavity flow and Pearson vortex problems, flow past a circular cylinder symmetrically installed in a channel, flow past an elliptic cylinder at an angle of attack, and flow past two tandem circular cylinders of unequal diameters. For the numerical simulations of flows past bluff bodies an immersed boundary (IB) method has been implemented in which the solid object is represented by a distributed body force in the Navier–Stokes equations. The main advantages of the implemented immersed boundary method are that the simulations could be performed on a regular Cartesian grid and applied to multiple nested-block (Cartesian) structured grids without any difficulty. Through the numerical experiments the strength of the solver in effectively/accurately simulating various complex flows past different forms of immersed boundaries is extensively demonstrated, in which the nested Cartesian grid method was suitably combined together with the fractional-step algorithm to speed up the solution procedure.  相似文献   

6.
王兆清  钱航  李金 《计算物理》2021,38(1):16-24
考虑热传导方程的移动边界问题,其定解区域随着时间而变化.构造一种时空域上的高精度数值算法求解1+1维移动边界问题.在时空域上假设一个初始移动边界位置,构成移动边界问题的不规则计算区域,选择一个适当的正则区域(矩形区域)完全覆盖所计算的不规则区域,在正则区域上利用移动边界约束条件和固定边界条件,采用时空域重心插值配点法求...  相似文献   

7.
A general class of explicit and implicit dynamic finite difference schemes for large-eddy simulation is constructed, by combining Taylor series expansions on two different grid resolutions. After calibration for Re→, the dynamic finite difference schemes allow to minimize the dispersion errors during the calculation through the real-time adaption of a dynamic coefficient. In case of DNS resolution, these dynamic schemes reduce to Taylor-based finite difference schemes with formal asymptotic order of accuracy, whereas for LES resolution, the schemes adapt to Dispersion-Relation Preserving schemes. Both the explicit and implicit dynamic finite difference schemes are tested for the large-eddy simulation of the Taylor–Green vortex flow and numerical errors are investigated as well as their interaction with the dynamic Smagorinsky model and the multiscale Smagorinsky model. Very good results are obtained.  相似文献   

8.
A sharp interface Cartesian grid method for the large-eddy simulation of two-phase turbulent flows interacting with moving bodies is presented. The overall approach uses a sharp interface immersed boundary formulation and a level-set/ghost–fluid method for solid–fluid and fluid–fluid interface treatments, respectively. A four-step fractional-step method is used for velocity–pressure coupling, and a Lagrangian dynamic Smagorinsky subgrid-scale model is adopted for large-eddy simulations. A simple contact angle boundary condition treatment that conforms to the immersed boundary formulation is developed. A variety of test cases of different scales ranging from bubble dynamics, water entry and exit, landslide-generated waves, to ship hydrodynamics are performed for validation. Extensions for high Reynolds number ship flows using wall-layer models are also considered.  相似文献   

9.
This paper concerns the development of a new Cartesian grid/immersed boundary (IB) method for the computation of incompressible viscous flows in two-dimensional irregular geometries. In IB methods, the computational grid is not aligned with the irregular boundary, and of upmost importance for accuracy and stability is the discretization in cells which are cut by the boundary, the so-called “cut-cells”. In this paper, we present a new IB method, called the LS-STAG method, which is based on the MAC method for staggered Cartesian grids and where the irregular boundary is sharply represented by its level-set function. This implicit representation of the immersed boundary enables us to calculate efficiently the geometry parameters of the cut-cells. We have achieved a novel discretization of the fluxes in the cut-cells by enforcing the strict conservation of total mass, momentum and kinetic energy at the discrete level. Our discretization in the cut-cells is consistent with the MAC discretization used in Cartesian fluid cells, and has the ability to preserve the five-point Cartesian structure of the stencil, resulting in a highly computationally efficient method. The accuracy and robustness of our method is assessed on canonical flows at low to moderate Reynolds number: Taylor–Couette flow, flows past a circular cylinder, including the case where the cylinder has forced oscillatory rotations. Finally, we will extend the LS-STAG method to the handling of moving immersed boundaries and present some results for the transversely oscillating cylinder flow in a free-stream.  相似文献   

10.
We describe a simple mapped-grid approach for the efficient numerical simulation of compressible multiphase flow in general multi-dimensional geometries. The algorithm uses a curvilinear coordinate formulation of the equations that is derived for the Euler equations with the stiffened gas equation of state to ensure the correct fluid mixing when approximating the equations numerically with material interfaces. A γ-based and a α-based model have been described that is an easy extension of the Cartesian coordinates counterpart devised previously by the author [30]. A standard high-resolution mapped grid method in wave-propagation form is employed to solve the proposed multiphase models, giving the natural generalization of the previous one from single-phase to multiphase flow problems. We validate our algorithm by performing numerical tests in two and three dimensions that show second order accurate results for smooth flow problems and also free of spurious oscillations in the pressure for problems with interfaces. This includes also some tests where our quadrilateral-grid results in two dimensions are in direct comparisons with those obtained using a wave-propagation based Cartesian grid embedded boundary method.  相似文献   

11.
We have developed an adaptive grid-refinement approach for simulating geophysical flows on scales from micro to planetary. Our model is nonoscillatory forward-in-time (NFT), nonhydrostatic, and anelastic. The major focus in this effort to date has been the design of a generalized mathematical framework for the implementation of deformable coordinates and its efficient numerical coding in a generic Eulerian/semi-Lagrangian NFT format. The key prerequisite of the adaptive grid is a time-dependent coordinate transformation, implemented rigorously throughout the governing equations of the model. The transformation enables mesh refinement indirectly via dynamic change of the metric coefficients, while retaining advantages of Cartesian mesh calculations (speed, low memory requirements, and accuracy) conducted fully in the computational domain. Diverse test results presented in this paper – simulations of a traveling stratospheric inertio-gravity-wave packet (with numerically advected dense-mesh region) and an idealized climate of the Earth (with analytically prescribed adaptive transformations) – demonstrate the potential and the efficacy of the new deformable grid model for tracing targeted flow features and dynamically adjusting to prescribed undulations of model boundaries.  相似文献   

12.
This study examines the use of stationary Cartesian mesh for steady and unsteady flow computations. The surface boundary conditions are imposed by reflected points. A cloud of nodes in the vicinity of the surface is used to get a weighted average of the flow properties via a gridless least-squares technique. If the displacement of the moving surface from the original position is typically small, a small-perturbation boundary condition method can be used. To ensure computational efficiency, multigrid solution is made via a framework of embedded grids for local grid refinement. Computations of airfoil wing and wing-body test cases show the practical usefulness of the embedded Cartesian grids with the small-perturbation boundary conditions approach.  相似文献   

13.
A physical and mathematical model has been proposed for computing the thermal state and shape of the individual deposited track at the laser powder cladding. A three-dimensional statement of the two-phase problem of Stefan type with curved moving boundaries is considered. One of the boundaries is the melting-crystallization boundary, and the other is the boundary of the deposited layer, where the conservation laws are written from the condition of the inflow of the additional mass and energy. To describe the track shape the equation of kinematic compatibility of the points of a surface is used, the motion of which occurs at the expense of the mass of powder particles supplied to the radiation spot. An explicit finite difference scheme on a rectangular nonuniform grid is used for numerical solution of equations. The computations are carried out by through computation without an explicit identification of curved boundaries by using a modification of the immersed boundary method. The computational results are presented for the thermal state and the shape of the surface of the forming individual track depending on physical parameters: the substrate initial temperature, laser radiation intensity, scanning speed, powder feeding rate, etc.  相似文献   

14.
15.
张玉东  纪楚群 《计算物理》2006,23(2):165-170
发展建立了用于多体分离等包含动边界的非定常流场数值模拟方法,建立了笛卡尔坐标系下边界以任意速度运动的控制体上的流动控制方程,结合几何守恒律确定网格速度,发展了基于结构网格的动网格方法,网格移动量采用加权插值方法得到.通过数值模拟二维翼型及三维机翼的强迫振荡非定常流场,表明该方法可以数值模拟包含动边界的非定常流场.  相似文献   

16.
 根据Maxwell方程推导出电磁场参数与速度之间的关系,建立了直角坐标下的电磁场和温度场扩散2维偏微分方程, 分析了固体电枢电磁轨道炮的速度趋肤效应。以矩形固体电枢为例,给出了边界条件和激励源函数。采用有限差分法对方程进行求解,并对数据进行了分析,得到轨道和电枢中磁感应强度、温度和电流密度的分布曲线。计算结果表明:电枢的运动使得电流密度集中在电枢和轨道交界面的尾部,使得该局部地区温度增加,进而引起电枢尾部的熔融与烧蚀。  相似文献   

17.
Vector arithmetic is a base of (coordinate) geometry, physics and various other disciplines. The usual method is based on Cartesian coordinate-system which fits both to continuous plane/space and digital rectangular-grids. The triangular grid is also regular, but it is not a point lattice: it is not closed under vector-addition, which gives a challenge. The points of the triangular grid are represented by zero-sum and one-sum coordinate-triplets keeping the symmetry of the grid and reflecting the orientations of the triangles. This system is expanded to the plane using restrictions like, at least one of the coordinates is an integer and the sum of the three coordinates is in the interval [−1,1]. However, the vector arithmetic is still not straightforward; by purely adding two such vectors the result may not fulfill the above conditions. On the other hand, for various applications of digital grids, e.g., in image processing, cartography and physical simulations, one needs to do vector arithmetic. In this paper, we provide formulae that give the sum, difference and scalar product of vectors of the continuous coordinate system. Our work is essential for applications, e.g., to compute discrete rotations or interpolations of images on the triangular grid.  相似文献   

18.
We present a second-order Godunov algorithm to solve time-dependent hyperbolic systems of conservation laws on irregular domains. Our approach is based on a formally consistent discretization of the conservation laws on a finite-volume grid obtained from intersecting the domain with a Cartesian grid. We address the small-cell stability problem associated with such methods by hybridizing our conservative discretization with a stable, nonconservative discretization at irregular control volumes, and redistributing the difference in the mass increments to nearby cells in a way that preserves stability and local conservation. The resulting method is second-order accurate in L1 for smooth problems, and is robust in the presence of large-amplitude discontinuities intersecting the irregular boundary.  相似文献   

19.
A new numerical method to model the dynamic behavior of lipid vesicles under general flows is presented. A gradient-augmented level set method is used to model the membrane motion. To enforce the volume- and surface-incompressibility constraints a four-step projection method is developed to integrate the full Navier–Stokes equations. This scheme is implemented on an adaptive non-graded Cartesian grid. Convergence results are presented, along with sample two-dimensional results of vesicles under various flow conditions.  相似文献   

20.
We present an approach for constructing finite-volume methods for flux-divergence forms to any order of accuracy defined as the image of a smooth mapping from a rectangular discretization of an abstract coordinate space. Our approach is based on two ideas. The first is that of using higher-order quadrature rules to compute the flux averages over faces that generalize a method developed for Cartesian grids to the case of mapped grids. The second is a method for computing the averages of the metric terms on faces such that freestream preservation is automatically satisfied. We derive detailed formulas for the cases of fourth-order accurate discretizations of linear elliptic and hyperbolic partial differential equations. For the latter case, we combine the method so derived with Runge–Kutta time discretization and demonstrate how to incorporate a high-order accurate limiter with the goal of obtaining a method that is robust in the presence of discontinuities and underresolved gradients. For both elliptic and hyperbolic problems, we demonstrate that the resulting methods are fourth-order accurate for smooth solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号