首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Treatment of the osmabenzyne Os([triple bond]CC(SiMe(3))=C(Me)C(SiMe(3))=CH)Cl(2)(PPh(3))(2) (1) with 2,2'-bipyridine (bipy) and thallium triflate (TlOTf) produces the thermally stable dicationic osmabenzyne [Os([triple bond]CC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)](OTf)(2) (2). The dicationic osmabenzyne 2 reacts with ROH (R = H, Me) to give osmabenzene complexes [Os(=C(OR)CH=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf, in which the metallabenzene ring deviates significantly from planarity. In contrast, reaction of the dicationic complex 2 with NaBH(4) produces a cyclopentadienyl complex, presumably through the osmabenzene intermediate [Os(=CHC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf. The higher thermal stability of [Os(=C(OR)CH=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf relative to [Os(=CHC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf can be related to the stabilization effect of the OR groups on the metallacycle. A theoretical study shows that conversion of the dicationic osmabenzyne complex [Os([triple bond]CC(SiMe(3))=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)](OTf)(2) to a carbene complex by reductive elimination is thermodynamically unfavorable. The theoretical study also suggests that the nonplanarity of the osmabenzenes [Os(=C(OR)CH=C(Me)C(SiMe(3))=CH)(bipy)(PPh(3))(2)]OTf is mainly due to electronic reasons.  相似文献   

2.
Treatment of [[Ti(eta(5)-C(5)Me(5))(mu-NH)](3)(mu(3)-N)] with alkali-metal bis(trimethylsilyl)amido derivatives [M[N(SiMe(3))(2)]] in toluene affords edge-linked double-cube nitrido complexes [M(mu(4)-N)(mu(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)]](2) (M = Li, Na, K, Rb, Cs) or corner-shared double-cube nitrido complexes [M(mu(3)-N)(mu(3)-NH)(5)[Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)](2)] (M = Na, K, Rb, Cs). Analogous reactions with 1/2 equiv of alkaline-earth bis(trimethylsilyl)amido derivatives [M[N(SiMe(3))(2)](2)(thf)(2)] give corner-shared double-cube nitrido complexes [M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)](2)] (M = Mg, Ca, Sr, Ba). If 1 equiv of the group 2 amido reagent is employed, single-cube-type derivatives [(thf)(x)[(Me(3)Si)(2)N]M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)]] (M = Mg, x = 0; M = Ca, Sr, Ba, x = 1) can be isolated or identified. The tetrahydrofuran molecules are easily displaced with 4-tert-butylpyridine in toluene, affording the analogous complexes [(tBupy)[(Me(3)Si)(2)N]M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)]] (M = Ca, Sr). The X-ray crystal structures of [M(mu(3)-N)(mu(3)-NH)(5)[Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)](2)] (M = K, Rb, Cs) and [M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3))-N)](2)] (M = Ca, Sr) have been determined. The properties and solid-state structures of the azaheterometallocubane complexes bearing alkali and alkaline-earth metals are discussed.  相似文献   

3.
Reactions of β-diketiminato group 2 silylamides, [HC{(Me)CN(2,6-(i)Pr(2)C(6)H(3))}(2)M(THF)(n){N(SiMe(3))(2)}] (M = Mg, n = 0; M = Ca, Sr, n = 1), and an equimolar quantity of pyrrolidine borane, (CH(2))(4)NH·BH(3), were found to produce amidoborane derivatives of the form [HC{(Me)CN(2,6-(i)Pr(2)C(6)H(3))}(2)MN(CH(2))(4)·BH(3)]. In reactivity reminiscent of analogous reactions performed with dimethylamine borane, addition of a second equivalent of (CH(2))(4)NH·BH(3) to the Mg derivative induced the formation of a species, [HC{(Me)CN(2,6-(i)Pr(2)C(6)H(3))}(2)Mg{N(CH(2))(4) BH(2)NMe(2)BH(3)}], containing an anion in which two molecules of the amine borane substrate have been coupled together through the elimination of one molecule of H(2). Both this species and a calcium amidoborane derivative have been characterised by X-ray diffraction techniques and the coupled species is proposed as a key intermediate in catalytic amine borane dehydrocoupling, in reactivity dictated by the charge density of the group 2 centre involved. On the basis of further stoichiometric reactions of the homoleptic group 2 silylamides, [M{N(SiMe(3))(2)}(2)] (M = Mg, Ca, Sr, Ba), with (CH(3))(2)NH·BH(3) and (i)Pr(2)NH·BH(3) reactivity consistent with successive amidoborane β-hydride elimination and [R(2)N[double bond, length as m-dash]BH(2)] insertion is described as a means to induce the B-N dehydrocoupling between amine borane substrates.  相似文献   

4.
Trialkyl imido niobium and tantalum complexes [MR(3)(NtBu)] (M = Nb, R = Me 2, CH(2)CMe(3)3, CH(2)CMe(2)Ph 4, CH(2)SiMe(3)5; M = Ta, R = Me 6, CH(2)CMe(2)Ph 7, CH(2)SiMe(3)8) have been prepared by treatment of solutions containing [MCl(3)(NtBu)py(2)] (M = Nb 1a, Ta 1b) with three equivalents of magnesium reagent. By an unexpected hydrolysis reaction of the tris-trimethylsilylmethyl imido tantalum compound 8a, a μ-oxo derivative [(Me(3)SiCH(2)O)(Me(3)SiCH(2))(3)Ta(μ-O)Ta(CH(2)SiMe(3))(2)(NtBu)] (8a) was formed and its structure was studied by X-ray diffraction methods. Reactions of trialkyl imido compounds with two equivalents of isocyanide 2,6-Me(2)C(6)H(3)NC result in the migration of two alkyl groups, leading to the formation of a series of alkyl imido bisiminoacyl derivatives [MR(NtBu){C(R)NAr}(2)] (Ar = 2,6-Me(2)C(6)H(3); M = Nb, R = Me 9, CH(2)CMe(3)10, CH(2)CMe(2)Ph 11, CH(2)SiMe(3)12, CH(2)Ph 13; M = Ta, R = CH(2)CMe(3)14, CH(2)CMe(2)Ph 15, CH(2)SiMe(3)16). All compounds were studied by IR and NMR ((1)H, (13)C and (15)N) spectroscopy.  相似文献   

5.
The preparation of a series of extremely bulky secondary amines, Ar*N(H)SiR(3) (Ar* = C(6)H(2){C(H)Ph(2)}(2)Me-2,6,4; R(3) = Me(3), MePh(2) or Ph(3)) is described. Their deprotonation with either LiBu(n), NaH or KH yields alkali metal amide complexes, several monomeric examples of which, [Li(L){N(SiMe(3))(Ar*)}] (L = OEt(2) or THF), [Na(THF)(3){N(SiMe(3))(Ar*)}] and [K(OEt(2)){N(SiPh(3))(Ar*)], have been crystallographically characterised. Reactions of the lithium amides with germanium, tin or lead dichloride have yielded the first structurally characterised two-coordinate, monomeric amido germanium(II) and tin(II) chloride complexes, [{(SiR(3))(Ar*)N}ECl] (E = Ge or Sn; R = Me or Ph), and a chloride bridged amido-lead(II) dimer, [{[(SiMe(3))(Ar*)N]Pb(μ-Cl)}(2)]. DFT calculations on [{(SiMe(3))(Ar*)N}GeCl] show its HOMO to exhibit Ge lone pair character and its LUMO to encompass its Ge based p-orbital. A series of bulky amido silicon(IV) chloride complexes have also been prepared and several examples, [{(SiR(3))(Ar*)N}SiCl(3)] (R(3) = Me(3), MePh(2)) and [{(SiMe(3))(Ar*)N}SiHCl(2)], were crystallographically characterised. The sterically hindered group 14 complexes reported in this study hold significant potential as precursors for kinetically stabilised low oxidation state and/or low coordination number group 14 complexes.  相似文献   

6.
Yang D  Ding Y  Wu H  Zheng W 《Inorganic chemistry》2011,50(16):7698-7706
Several of alkaline-earth-metal complexes [(η(2):η(2):μ(N):μ(N)-Li)(+)](2)[{η(2)-Me(2)Si(DippN)(2)}(2)Mg](2-) (4), [η(2)(N,N)-Me(2)Si(DippN)(2)Ca·3THF] (5), [η(2)(N,N)-Me(2)Si(DippN)(2)Sr·THF] (6), and [η(2)(N,N)-Me(2)Si(DippN)(2)Ba·4THF] (7) of a bulky bis(amido)silane ligand were readily prepared by the metathesis reaction of alkali-metal bis(amido)silane [Me(2)Si(DippNLi)(2)] (Dipp = 2,6-i-Pr(2)C(6)H(3)) and alkaline-earth-metal halides MX(2) (M = Mg, X = Br; M = Ca, Sr, Ba, X = I). Alternatively, compounds 5-7 were synthesized either by transamination of M[N(SiMe(3))(2)](2)·2THF (M = Ca, Sr, Ba) and [Me(2)Si(DippNH)(2)] or by transmetalation of Sn[N(SiMe(3))(2)](2), [Me(2)Si(DippNH)(2)], and metallic calcium, strontium, and barium in situ. The metathesis reaction of dilithium bis(amido)silane [Me(2)Si(DippNLi)(2)] and magnesium bromide in the presence of oxygen afforded, however, an unusual lithium oxo polyhedral complex {[(DippN(Me(2)Si)(2))(μ-O)(Me(2)Si)](2)(μ-Br)(2)[(μ(3)-Li)·THF](4)(μ(4)-O)(4)(μ(3)-Li)(2)} (8) with a square-basket-shaped core Li(6)Br(2)O(4) bearing a bis(aminolato)silane ligand. All complexes were characterized using (1)H, (13)C, and (7)Li NMR and IR spectroscopy, in addition to X-ray crystallography.  相似文献   

7.
The protonolysis reaction of [Ln(AlMe(4))(3)] with various substituted cyclopentadienyl derivatives HCp(R) gives access to a series of half-sandwich complexes [Ln(AlMe(4))(2)(Cp(R))]. Whereas bis(tetramethylaluminate) complexes with [1,3-(Me(3)Si)(2)C(5)H(3)] and [C(5)Me(4)SiMe(3)] ancillary ligands form easily at ambient temperature for the entire Ln(III) cation size range (Ln=Lu, Y, Sm, Nd, La), exchange with the less reactive [1,2,4-(Me(3)C)(3)C(5)H(3)] was only obtained at elevated temperatures and for the larger metal centers Sm, Nd, and La. X-ray structure analyses of seven representative complexes of the type [Ln(AlMe(4))(2)(Cp(R))] reveal a similar distinct [AlMe(4)] coordination (one eta(2), one bent eta(2)). Treatment with Me(2)AlCl leads to [AlMe(4)] --> [Cl] exchange and, depending on the Al/Ln ratio and the Cp(R) ligand, varying amounts of partially and fully exchanged products [{Ln(AlMe(4))(mu-Cl)(Cp(R))}(2)] and [{Ln(mu-Cl)(2)(Cp(R))}(n)], respectively, have been identified. Complexes [{Y(AlMe(4))(mu-Cl)(C(5)Me(4)SiMe(3))}(2)] and [{Nd(AlMe(4))(mu-Cl){1,2,4-(Me(3)C)(3)C(5)H(2)}}(2)] have been characterized by X-ray structure analysis. All of the chlorinated half-sandwich complexes are inactive in isoprene polymerization. However, activation of the complexes [Ln(AlMe(4))(2)(Cp(R))] with boron-containing cocatalysts, such as [Ph(3)C][B(C(6)F(5))(4)], [PhNMe(2)H][B(C(6)F(5))(4)], or B(C(6)F(5))(3), produces initiators for the fabrication of trans-1,4-polyisoprene. The choice of rare-earth metal cation size, Cp(R) ancillary ligand, and type of boron cocatalyst crucially affects the polymerization performance, including activity, catalyst efficiency, living character, and polymer stereoregularity. The highest stereoselectivities were observed for the precatalyst/cocatalyst systems [La(AlMe(4))(2)(C(5)Me(4)SiMe(3))]/B(C(6)F(5))(3) (trans-1,4 content: 95.6 %, M(w)/M(n)=1.26) and [La(AlMe(4))(2)(C(5)Me(5))]/B(C(6)F(5))(3) (trans-1,4 content: 99.5 %, M(w)/M(n)=1.18).  相似文献   

8.
A series of titanium-group 3/lanthanide metal complexes have been prepared by reaction of [{Ti(η(5)-C(5)Me(5))(μ-NH)}(3)(μ(3)-N)] (1) with halide, triflate, or amido derivatives of the rare-earth metals. Treatment of 1 with metal halide complexes [MCl(3)(thf)(n)] or metal trifluoromethanesulfonate derivatives [M(O(3)SCF(3))(3)] at room temperature affords the cube-type adducts [X(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (X = Cl, M = Sc (2), Y (3), La (4), Sm (5), Er (6), Lu (7); X = OTf, M = Y (8), Sm (9), Er (10)). Treatment of yttrium (3) and lanthanum (4) halide complexes with 3 equiv of lithium 2,6-dimethylphenoxido [LiOAr] produces the aryloxido complexes [(ArO)(3)M{(μ(3)-NH)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (M = Y (11), La (12)). Complex 1 reacts with 0.5 equiv of rare-earth bis(trimethylsilyl)amido derivatives [M{N(SiMe(3))(2)}(3)] in toluene at 85-180 °C to afford the corner-shared double-cube nitrido compounds [M(μ(3)-N)(3)(μ(3)-NH)(3){Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}(2)] (M = Sc (13), Y (14), La (15), Sm (16), Eu (17), Er (18), Lu (19)) via NH(SiMe(3))(2) elimination. A single-cube intermediate [{(Me(3)Si)(2)N}Sc{(μ(3)-N)(2)(μ(3)-NH)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-N)}] (20) was obtained by the treatment of 1 with 1 equiv of the scandium bis(trimethylsilyl)amido derivative [Sc{N(SiMe(3))(2)}(3)]. The X-ray crystal structures of 2, 7, 11, 14, 15, and 19 have been determined. The thermal decomposition in the solid state of double-cube nitrido complexes 14, 15, and 18 has been investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) measurements, as well as by pyrolysis experiments at 1100 °C under different atmospheres (Ar, H(2)/N(2), NH(3)) for the yttrium complex 14.  相似文献   

9.
Group 4 metal complexes [M(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, pyrazine, pyrimidine, thiazole, M = Ti; R = pyridine, thiazole; M = Zr) containing the tetramethylcyclopentadienyl-dialkylsilyl bridged amidinato as pendant ligand, were synthesized and characterized by elemental analysis, solution (1)H, (13)C and (15)N NMR spectroscopy and experimental (13)C and (15)N CPMAS in the solid state. The crystal structures of [Ti(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, pyrazine, pyrimidine, thiazole) were determined by single crystal X-ray diffraction studies. All compounds exhibit a distorted tetrahedral geometry, with the ansa-monocyclopentadienyl-amido ligands acting in a bidentate mode. The [M(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, thiazole; M = Zr, Ti) complexes are ethylene polymerization catalysts in the presence of MAO and they are active precursors in regioselective catalytic hydroamination operating with an anti-Markovnikov mechanism.  相似文献   

10.
The synthesis of a range of alkyl/chloro-gallium alkoxide and amido/alkoxide compounds was achieved via a series of protonolysis and alcoholysis steps. The initial reaction involved the synthesis of [Me(Cl)Ga{N(SiMe(3))(2)}](2) (1) via methyl group transfer from the reaction of GaCl(3) with two equivalents of LiN(SiMe(3))(2). Reaction of 1 with varying amounts of ROH resulted in the formation of [Me(Cl)Ga(OR)](2) (2, R = CH(2)CH(2)OMe; 3, CH(CH(3))CH(2)NMe(2)), [Me(Cl)Ga{N(SiMe(3))(2)}(μ(2)-OR)Ga(Cl)Me] (4, R = CH(2)CH(2)NMe(2)), or [MeGa(OR)(2)] (5, R = CH(CH(3))CH(2)NMe(2)). Compound 4 represents an intermediate in the formation of dimeric complexes, of the type [Me(Cl)Ga(OR)](2), when formed from compound [Me(Cl)Ga{N(SiMe(3))(2)}](2). A methylgallium amido/alkoxide complex [MeGa{N(SiMe(3))(2)}(OCH(2)CH(2)OMe)](2) (6) was isolated when 2 was further reacted with LiN(SiMe(3))(2). In addition, reaction of 2 with HO(t)Bu resulted in a simple alcohol/alkoxide exchange and formation of [Me(Cl)Ga(O(t)Bu)](2) (7). In contrast to the formation of 1, the in situ reaction of GaCl(3) with one equivalent of LiN(SiMe(3))(2) yielded [Cl(2)Ga{N(SiMe(3))(2)}](2) in low yield, where no methyl group transfer has occurred. Reaction of alcohol with [Cl(2)Ga{N(SiMe(3))(2)}](2) was then found to yield [Cl(2)Ga(OR)](2) (8, R = CH(2)CH(2)NMe(2)), and further reaction of 8 with LiN(SiMe(3))(2) yielded the gallium amido alkoxide complex, [ClGa{N(SiMe(3))(2)}(OR)](2) (9, R = CH(2)CH(2)NMe(2)), similar to 6. The structures of compounds 4, 5, 7, and 8 have been determined by single-crystal X-ray diffraction.  相似文献   

11.
It is demonstrated that the cyclopentadienyl-free simple lanthanide amides [(Me(3)Si)(2)N](3)Ln(mu-Cl)Li(THF)(3)(Ln = La, Sm, Eu, Y, Yb) and Ln[N(SiMe(3))(2)]3 (Ln = Y, Yb) are highly efficient catalysts for the guanylation of both aromatic and secondary amines with a high activity under mild conditions. It is found that these catalysts are compatible with a wide range of solvents and substrates.  相似文献   

12.
Two series of heavy alkaline earth metal pyrazolates, [M(Ph(2)pz)(2)(thf)(4)] 1 a-c (Ph(2)pz=3,5-diphenylpyrazolate, M=Ca, Sr, Ba; THF=tetrahydrofuran) and [M(Ph(2)pz)(2)(dme)(n)] (M=Ca, 2 a, Sr, 2 b, n=2; M=Ba, 2 c, n=3; DME=1,2-dimethoxyethane) have been prepared by redox transmetallation/ligand exchange utilizing Hg(C(6)F(5))(2). Compounds 1 a and 2 b were also obtained by redox transmetallation with Tl(Ph(2)pz). Alternatively, direct reaction of the alkaline earth metals with 3,5-diphenylpyrazole at elevated temperatures under solventless conditions yielded compounds 1 a-c and 2 a-c upon extraction with THF or DME. By contrast, [M(Me(2)pz)(2)(Me(2)pzH)(4)] 3 a-c (M=Ca, Sr, Ba; Me(2)pzH=3,5-dimethylpyrazole) were prepared by protolysis of [M[N(SiMe(3))(2)](2)(thf)(2)] (M=Ca, Sr, Ba) with Me(2)pzH in THF and by direct metallation with Me(2)pzH in liquid NH(3)/THF. Compounds 1 a-c and 2 a-c display eta(2)-bonded pyrazolate ligands, while 3 a,b exhibit eta(1)-coordination. Complexes 1 a-c have transoid Ph(2)pz ligands and an overall coordination number of eight with a switch from mutually coplanar Ph(2)pz ligands in 1 a,b to perpendicular in 1 c. In eight coordinate 2 a,b the pyrazolate ligands are cisoid, whilst 2 c has an additional DME ligand and a metal coordination number of ten. By contrast, 3 a,b have octahedral geometry with four eta(1)-Me(2)pzH donors, which are hydrogen-bonded to the uncoordinated nitrogen atoms of the two trans Me(2)pz ligands. The application of synthetic routes initially developed for the preparation of lanthanoid pyrazolates provides detailed insight into the similarities and differences between the two groups of metals and structures of their complexes.  相似文献   

13.
Dehydrogenation of Me(2)NH·BH(3) (1) by group 4 metallocene alkyne complexes of the type Cp(2)M(L)(η(2)-Me(3)SiC(2)SiMe(3)) [Cp = η(5)-cyclopentadienyl; M = Ti, no L (2Ti); M = Zr, L = pyridine (2Zr)] and group 4 metal amido complexes of the type M(NMe(2))(4) [M = Ti (8Ti), Zr (8Zr)] is presented.  相似文献   

14.
Reactions of (Et(2)N)(2)P-P(SiMe(3))Li with [Cp(2)MCl(2)] (M = Zr, Hf) in toluene or pentane yield the related terminal phosphanylphosphido complexes [Cp(2)M(Cl){η(1)-(Me(3)Si)P-P(NEt(2))(2)}]. The solid state structure of [Cp(2)Hf(Cl){η(1)-(Me(3)Si)P-P(NEt(2))(2)}] was established by single crystal X-ray diffraction. The reaction of (Et(2)N)(2)P-P(SiMe(3))Li with [Cp(2)ZrCl(2)] in THF or DME solutions leads to the formation of deep red crystals of the first neutral diamagnetic zirconocene-phosphanylphosphinidene dimer [Cp(2)Zr{μ(2)-P-P(NEt(2))(2)}(2)ZrCp(2)]. The molecular structure of this compound was confirmed by X-ray diffraction. The reactions of (R(2)N)(2)P-P(SiMe(3))Li with [CpZrCl(3)] yield the related tetraphosphetanes R(2)NP(μ(2)-PSiMe(3))(2)PNR(2), which apparently are formed as a result of a transfer of NR(2) groups from a P atom to the Zr atom.  相似文献   

15.
Cyclic polyamine 1,4,7-trimethyl-1,4,7,10-tetraazacyclododecane, (Me(3)TACD)H (= Me(3)[12]aneN(4)), reacted with [K{N(SiHMe(2))(2)}] in benzene-d(6) to give [K{(Me(3)TACD)SiMe(2)N(SiHMe(2))}] (1) under hydrogen evolution. Single-crystal X-ray diffraction of 1 shows a dinuclear structure in the solid state, featuring a bridging μ-amido and a weak β-agostic Si-H bond. 1,7-Dimethyl-1,4,7,10-tetraazacyclododecane (Me(2)TACD)H(2) (= Me(2)[12]aneN(4)) and (Me(3)TACD)H were reacted with [Sc{N(SiHMe(2))(2)}(3)(thf)] in benzene-d(6) to give [{(Me(2)TACD)SiMe(2)N(SiHMe(2))}Sc{N(SiHMe(2))(2)}] (2) and [(Me(3)TACD)Sc{N(SiHMe(2))(2)}(2)SiMe(2)] (3), respectively. Both compounds are monomeric in solution and X-ray diffraction studies showed the scandium metal centers to be six-coordinate. The scandium alkyl complex [Sc(Me(3)TACD)(CH(2)SiMe(3))(2)] (4) was obtained by reacting (Me(3)TACD)H with [Sc(CH(2)SiMe(3))(3)(thf)] in benzene-d(6). The scandium amide complexes 2 and 3 catalyzed the ring-opening polymerization (ROP) of meso-lactide to give syndiotactic polylactides.  相似文献   

16.
The miscellaneously substituted silyltellanes tBu(2)PhSiTeSiMe(3) (1) and (Me(3)Si)(3)SiTeSiMe(3) were used to synthesize the cyclic tin(II) and lead(II) tellurolates [(tBu(2)PhSiTe)(4)M(2)] (M = Sn (2), Pb (3)), [tBu(2)PhSiTePbC(SiMe(3))(3)](2) (4) and the uncommon cluster compound [{(Me(3)Si)(3)SiTe}(4)Te(2)Sn(4)] (5).  相似文献   

17.
The coordination chemistry of chelating silanedithiolato ligands has been investigated on Fe(II), Co(II), Pd(II), Cu(I), and Ag(I). Treatment of M(OAc)(2) (M = Fe, Co, Pd) with cyclotrisilathiane (SSiMe(2))(3) in the presence of Lewis bases resulted in formation of Fe(S(2)SiMe(2))(PMDETA) (1), Fe(S(2)SiMe(2))(Me(3)TACN) (2), Co(S(2)SiMe(2))(PMDETA) (3), and Pd(S(2)SiMe(2))(PEt(3))(2) (4) (PMDETA = N,N,N',N',N' '-pentamethyldiethylenetriamine; Me(3)TACN = 1,4,7-trimethyl-1,4,7-triazacyclononane). The analogous reactions of M(OAc) (M = Cu, Ag) in the presence of PEt(3) gave rise to the dinuclear complexes M(2)[(SSiMe(2))(2)S](PEt(3))(3) [M = Cu (5), Ag (6)]. Complexes were characterized in solution by (1)H, (31)P[(1)H], and (29)Si[(1)H] NMR and in the solid state by single-crystal X-ray diffraction. Mononuclear complexes 1-3 have a four-membered MS(2)Si ring, and these five-coordinate complexes adopt trigonal-bipyramidal (for the PMDETA adducts) or square-pyramidal (for the Me(3)TACN adduct) geometries. In dimer 6, the (SSiMe(2))(2)S(2)(-) silanedithiolato ligand bridges two metal centers, one of which is three-coordinate and the other four-coordinate. The chelating effect of silanedithiolato ligands leads to an increase in the stability of silylated thiolato complexes.  相似文献   

18.
The carbaalane halogen derivatives [(AlX)(6)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(3))(6)] (X = F (9), Cl (7), Br (10), I (11)) were prepared in toluene from [(AlH)(6)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(3))(6)] (6) and BF(3).OEt(2), BX(3) (X = Br, I), Me(3)SnF, and Me(3)SiX (X = Cl, Br, I), respectively. A partially halogenated product [(AlH)(2)(AlX)(4)(AlNMe(3))(2)(CCH(2)CH(2)SiMe(3))(6)] (12) (X = Cl (approximately 40%), Br (approximately 60%)) was obtained from 5 and impure BBr(3). [(AlH)(6)(AlNMe(3))(2)(CCH(2)Ph)(6)] (5) was converted to [(AlX)(6)(AlNMe(3))(2)(CCH(2)Ph)(6)] (X = F (13), Cl (14), Br (15), I (16)) using BF(3).OEt(2) and Me(3)SiX (X = Cl, Br, I), respectively. The X-ray single-crystal structures of 11.C(6)H(6), 12.3C(7)H(8), 13.6C(7)H(8), and 15.4C(7)H(8) were determined. Compounds 7 and 9-11 are soluble in benzene/toluene and could be well characterized by NMR spectroscopy and MS (EI) spectrometry. The results demonstrate the facile substitution of the hydridic hydrogen atoms in 5 and 6 by the halides with different reagents.  相似文献   

19.
Group 5 metal complexes [M(eta5-C5H5)[eta5-C5H4SiMe2(CH2-eta]2-CH=CH2)]X] (M = Nb, X = Me, CH2Ph, CH2SiMe3; M = Ta, X = Me, CH2Ph) and [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2-eta2-CH=CH2)]X] (X = Cl, Me, CH2Ph, CH2SiMe3) containing a chelating alkene ligand tethered to a cyclopentadienyl ring have been synthesized in high yields by reduction with Na/Hg (X = Cl) and alkylation with reductive elimination (X = alkyl) of the corresponding metal(iv) dichlorides [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]Cl2] (Cp = C5H5, M = Nb, Ta, Cp = C5Me5, M = Ta). These chloro- and alkyl-alkene coordinated complexes react with CO and isocyanides [CNtBu, CN(2,6-Me2C6H3)] to give the ligand-substituted metal(III) compounds [M(eta5-Cp)[eta5-C5H4SiMe2(CH2CH=CH2)]XL] (X = Cl, Me, CH2Ph, CH2SiMe3). Reaction of the chloro-alkene tantalum complex with LiNHtBu results in formation of the imido hydride derivative [Ta(eta5-C5Me5)[eta5-C5H4SiMe2(CH2CH=CH2)]H(NtBu)]. NMR studies for all of the new compounds and DFT calculations for the alkene-coordinated metal complexes are compared with those known for related group 4 metal cations.  相似文献   

20.
A modified tris(pyrazolylborate) ligand has been prepared in two steps. First, reaction of triisopropylborate with allylmagnesium bromide and further treatment with benzoyl chloride gave CH(2) = CHCH(2)B(O(i)Pr), which was then reacted with potassium pyrazolate and pyrazole to give the compound K[CH(2) = CHCH(2)Bpz(3)]. The new allyl-containing scorpionate anion of acts as a bi- or tri-dentate ligand, as shown by the mononuclear complexes [CH(2) = CHCH(2)Bpz(3)M(LL)] (M = Rh, LL = nbd, ; LL = tfb, ; LL = (CO)(PPh(3)), ; M = Ir, LL = cod, ), obtained from reactions of the chlorido-bridged dinuclear complexes [{M(mu-Cl)(LL)}(2)] with 2. Furthermore, the borate represents a key material to achieve the attachment of tris(pyrazolyl)borate groups to the peripheries of carbosilane dendrimers. Thus, the platinum-catalyzed hydrosilylation reactions of compound with the dendritic cores Si[(CH(2))(3)SiMe(2)H](4) (G(0)-(SiH)(4)), (G(1)-(SiH)(8)), and (G(2)-(SiH)(16)) gave the corresponding borate-containing dendrimers Si[(CH(2))(3)SiMe(2)(CH(2))(3)B(O(i)Pr)(2)](4) (G(0)-B(4)), Si[(CH(2))(3)SiMe{(CH(2))(3)SiMe(2)(CH(2))(3)B(O(i)Pr)(2)}(2)](4) (G(1)-B(8)), and Si[(CH(2))(3)SiMe{(CH(2))(3)SiMe[(CH(2))(3)SiMe(2)(CH(2))(3)B(O(i)Pr)(2)](2)}(2)](4) (G(2)-B(16)) selectively in the anti-Markovnikov direction. Further reactions of G(0)-B(4), G(1)-B(8) and G(2)-B(16) with potassium pyrazolate and pyrazole rendered the corresponding polyanionic dendrimers K(4)[Si{(CH(2))(3)SiMe(2)(CH(2))(3)Bpz(3)}(4)] (G(0)-(Bpz(3))(4)), G(1)-(Bpz(3))(8), and G(2)-(Bpz(3))(16), respectively, which contain 4, 8, and 16 tris(pyrazolyl)borate groups symmetrically located around the dendritic peripheries. These unusual polyanionic dendrimers are excellent scaffolds to support metal centres, as shown by the reactions of G(0)-(Bpz(3))(4), G(1)-(Bpz(3))(8), and G(2)-(Bpz(3))(16) with [{Rh(mu-Cl)(nbd)}(2)] to give the neutral rhodadendrimers [Si{(CH(2))(3)SiMe(2)(CH(2))(3)Bpz(3)Rh(nbd)}(4)] G(0)-(Bpz(3)Rh)(4), G(1)-(Bpz(3)Rh)(8) and G(2)-(Bpz(3)Rh)(16) as stable solids in excellent yields. Following this protocol, mixed rhodium/iridium metallodendrimers can be prepared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号