首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The direct separation of the enantiomers of four 2-aminomono- or dihydroxycyclopentanecarboxylic acids and four 2-aminodihydroxycyclohexanecarboxylic acids was performed on chiral stationary phases containing macrocyclic glycopeptide antibiotics such as teicoplanin (Astec Chirobiotic T and T2), teicoplanin aglycone (Chirobiotic TAG) or ristocetin A (Chirobiotic R) as chiral selectors. The effects of the nature of organic modifiers, the pH, the mobile phase composition and the structures of the analytes on the separation were investigated. Chirobiotic TAG, and in some cases Chirobiotic T, proved to be the most useful of these columns. The elution sequence was determined in most cases.  相似文献   

2.
Direct reversed-phase high-performance liquid chromatographic methods were developed for the separation of enantiomers of eighteen unnatural β-amino acids, including several β-3-homo-amino acids. The direct separations of the underivatized analytes were performed on chiral stationary phases containing macrocyclic glycopeptide antibiotics such as teicoplanin (Chirobiotic T and T2), teicoplanin aglycone (Chirobiotic TAG), vancomycin (Chirobiotic V and V2), and ristocetin A (Chirobiotic R) as chiral selectors. The effects of the organic modifier, mobile phase composition and pH on the separations were investigated. A comparison of the separation performances of the macrocyclic glycopeptide stationary phases revealed that the Chirobiotic T2 column exhibited better selectivity than the Chirobiotic T column for the separation of β-3-homo-amino acid enantiomers; vancomycin or ristocetin A exhibited lower selectivity. The elution sequence was determined in some cases: the S enantiomers eluted before the R enantiomers, with the exception of the Chirobiotic R column, where the elution sequence R < S was observed.  相似文献   

3.
Direct and indirect reversed-phase (RP) high-performance liquid chromatographic methods were developed for the separation of enantiomers of 18 unnatural beta-amino acids, including several beta-3-homo amino acids. The direct separations of the underivatized analytes were performed on chiral stationary phases (CSPs) containing macrocyclic glycopeptide antibiotic teicoplanin (Chirobiotic T column) and teicoplanin aglycone (Chirobiotic TAG column). The indirect method involved pre-column derivatization with a new chiral derivatizing agent (CDA), (S)-N-(4-nitrophenoxycarbonyl)phenylalanine methoxyethyl ester ((S)-NIFE), and subsequent separation of diastereomers on Discovery C18 and Hyperpep 300 C18 columns. The different methods were compared in systematic chromatographic examinations. The effects of organic modifier, mobile phase composition, pH and flow rate on the separation were investigated.  相似文献   

4.
The enantiomers of five monoterpene-based 2-amino carboxylic acids were directly separated on chiral stationary phases containing macrocyclic glycopeptide antibiotics such as teicoplanin (Astec Chirobiotic T and T2) and teicoplanin aglycone (Chirobiotic TAG) as chiral selectors. The effects of pH, the mobile phase composition, the structure of the analyte and temperature on the separations were investigated. Experiments were performed at constant mobile phase compositions in the temperature range 10–40 °C to study the effects of temperature and thermodynamic parameters on separations. Apparent thermodynamic parameters and Tiso values were calculated from plots of ln k or ln α versus 1/T. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes. It was found that the enantioseparations were in most cases enthalpy driven. The sequence of elution of the enantiomers was determined in all cases.  相似文献   

5.
HPLC enantiomeric separations of a wide variety of racemic analytes was evaluated using chiral stationary phases (CSPs) based on the macrocyclic glycopeptides teicoplanin (T), teicoplanin aglycone (TAG), and methylated teicoplanin aglycone (Me-TAG) in two different mobile phase modes, i.e., the RP mode and the polar organic (PO) mode. Comparison of the enantiomeric separations using Chirobiotic T, Chirobiotic TAG, and the methylated form of TAG were conducted in order to gain a better understanding of the roles of the polar functional groups on the CSP. Substantial effects due to the cleavage of saccharides and/or methylation on chiral separations were observed in both separation modes. Improved separation efficiencies for many acidic analytes were obtained by methylating the H-bonding groups of TAG. These groups were believed to be a contributing factor to band broadening on TAG due to their negative effect on mass transfer between the stationary phase and mobile phase. Ionic/dipolar interactions between the carboxylate group of the analytes and the amine groups on T, TAG, or Me-TAG are important for chiral discrimination. Therefore, analytes possessing a carboxyl group are good candidates for successful separations on these CSPs. Hydrophobic interactions are important for enantiomeric separations in the RP mode where the H-bonding interactions between analytes and the chiral selectors are relatively weak. Me-TAG offers higher hydrophobicity, which can accentuate the interactions of analytes with hydrophobic moieties, but these interactions are not necessarily stereoselective. In the PO mobile phase, electrostatic/dipolar interactions between polar functional groups are the dominating interactions in chiral recognition. Another important factor is steric fit, which could be changed with every modification of the T structure. Therefore, substantial changes of enantioseparations were obtained within this studied group of CSPs. The PO mode was shown to be the most powerful mobile phase mode for enantiomeric separations on T-based stationary phases, mainly due to the improved efficiency. Methylation of the TAG proved to be a very useful tool for investigating the chiral recognition mechanism for this group of chiral selectors.  相似文献   

6.
Two macrocyclic glycopeptide antibiotic-type chiral stationary phases (CSPs) based on native teicoplanin and teicoplanin aglycone, Chirobiotic T and TAG, respectively, were evaluated with regard to the high-performance liquid chromatographic separation of the enantiomers of 10 secondary alpha-amino acids (imino acids). The chromatographic results are given as the retention, separation and resolution factors, together with the enantioselective free energy difference corresponding to the separation of the enantiomers. By application of these two CSPs, excellent resolutions were achieved for the investigated compounds by using reversed-phase mobile mode systems. The separation conditions were optimized by variation of the mobile phase composition. The difference in enantioselective free energy between the aglycone CSP and the teicoplanin CSP for these particular amino acids ranged between 0.70 and -1.83 kJ mol(-1). It was established that better enantioseparations of the secondary alpha-amino acids were attained in most cases on the aglycone CSP.  相似文献   

7.
The chiral recognition capabilities of three macrocyclic glycopeptide chiral selectors, namely teicoplanin (Chirobiotic T), its aglycone (Chirobiotic TAG) and ristocetin (Chirobiotic R), were evaluated with supercritical and subcritical fluid mobile phases. A set of 111 chiral compounds including heterocycles, analgesics (nonsteroidal antiinflamatory compounds), beta-blockers, sulfoxides, N-protected amino acids and native amino acids was separated on the three chiral stationary phases (CSPs). All separations were done with an outlet pressure regulated at 100 bar, 31 degrees C and at 4 ml/min. Various amounts of methanol ranging from 7 to 67% (v/v) were added to the carbon dioxide along with small amounts (0.1 to 0.5%, v/v) of triethylamine and/or trifluoroacetic acid. The Chirobiotic TAG CSP was the most effective closely followed by the Chirobiotic T column. Both columns were able to separate, partially or fully, 92% of the enantiomers of the compound set. The ristocetin chiral selector could partially or baseline resolve only 60% of the enantiomers tested. All separations were done in less than 15 min and 70% were done in less than 4 min. The speed of the separations is the main advantage of the use of SFC compared to normal-phase HPLC. In addition, SFC is advantageous for preparative separations with easy solute recovery and solvent disposal.  相似文献   

8.
Direct and indirect reversed-phase high-performance liquid chromatographic methods were developed for the separation of enantiomers of seventeen unnatural β-amino acids, including several β-3-homo amino acids. The direct separations of the underivatized analytes were performed on chiral stationary phases containing macrocyclic glycopeptide antibiotic teicoplanin (Chirobiotic T column) and teicoplanin aglycone (Chirobiotic TAG column). The indirect method involved pre-column derivatization with two new chiral derivatizing agents, (1S,2S)-1,3-diacetoxy-1-(4-nitrophenyl)-2-propylisothiocyanate, (S,S)-DANI and (S)-N-(4-nitrophenoxycarbonyl)phenylalanine methoxyethyl ester, (S)-NIFE. The different methods were compared in systematic chromatographic examinations. The effects of organic modifier, mobile phase composition, pH and flow rate on the separation were investigated.  相似文献   

9.
Enantiomer separations by HPLC using the macrocyclic glycopeptides teicoplanin (Chirobiotic T), teicoplanin aglycon (Chirobiotic TAG), and ristocetin A (Chirobiotic R) chiral stationary phases (CSP) have been achieved on a unique series of potentially biologically active racemic analogues of dihydrofurocoumarin. The macrocyclic glycopeptides have proven to be very selective for this class of compound. All of the 28 chiral analogues examined afforded baseline separation on at least one of the macrocyclic glycopeptide CSP. The teicoplanin CSP showed the broadest enantioselectivity with 24 of the compounds baseline separated. The TAG and the R CSP produced 23 and 14 baseline separations respectively. All three mobile phase modes, i.e. normal phase (NP), reversed phase (RP), and new polar organic modes (PO), have been evaluated. The NP mode proved to be most effective for the separation of chiral dihydrofurocoumarins on all CSP tested. In the reversed phase (RP) mode, all three CSP separated a similar number of compounds. It was observed that the structural characteristics of the analytes and steric effects are very important factors leading to chiral recognition. Hydrogen bonding was found to play a secondary role in chiral discrimination in the normal phase and polar organic modes. Hydrophobic interactions are important for chiral separation in the reversed-phase mode. Chromatographic retention data does not provide information on the absolute configuration of these chiral dihydrofurocoumarin derivatives. However, when coupled with circular dichroism using the exciton coupling chirality method, the enantiomer elution order and the absolute configuration of some chiral dihydrofurocoumarins were successfully determined.  相似文献   

10.
Two macrocyclic antibiotic type chiral stationary phases (CSPs), based on native teicoplanin and teicoplanin aglycone, Chirobiotic T and Chirobiotic TAG, respectively, were evaluated for the high-performance liquid chromatographic separation of enantiomers of 15 unnatural conformationally constrained alpha-amino acids, Phe and Tyr analogs, and 12 beta-amino acids having cycloalkane or cycloalkene skeletons. The chromatographic results are given as the retention, separation and resolution factors along with the enantioselective free energy difference corresponding to the separation of the enantiomers. It is clearly established that in most cases the aglycone is responsible for the enantioseparation of amino acids. The difference in enantioselective free energy between the aglycone CSP and the teicoplanin CSP was between 0.02 and 0.30 kcal mol(-1) for these particular amino acids. The resolution factors are higher with the aglycone CSP. Although the sugar units generally decrease the resolution of amino acid enantiomers, they can contribute significantly to the resolution of some unusual amino acid analogs. By application of these two CSPs excellent resolutions were achieved for most of the investigated compounds by using reversed phase or polar organic mobile mode systems. The separation conditions were optimized by variation of the mobile phase composition.  相似文献   

11.
Berkecz  R.  T&#;r&#;k  R.  Ilisz  I.  Forr&#;  E.  F&#;l&#;p  F.  Armstrong  D. W.  P&#;ter  A. 《Chromatographia》2006,63(13):S37-S43

Direct reversed-phase high-performance liquid chromatographic methods were developed for the separation of the enantiomers of tricyclic β-lactams, cis-3,4-benzo-6-azabicyclo[3.2.0]heptan-7-one, cis-4,5-benzo-7-azabicyclo[4.2.0]-octan-8-one, cis-5,6-benzo-8-azabicyclo[5.2.0]nonan-9-one and new bicyclic β-amino acids, the six- and seven-membered homologues of cis-1-amino-4,5-benzocyclopentane-2-carboxylic acid (benzocispentacin), cis-1-amino-5,6-benzocyclohexane-2-carboxylic acid and cis-1-amino-6,7-benzocycloheptane-2-carboxylic acid. The direct separations of the analytes were performed on chiral stationary phase (CSP) columns containing the macrocyclic glycopeptide antibiotic teicoplanin (Chirobiotic T), teicoplanin aglycone (Chirobiotic TAG), vancomycin (Chirobiotic V), vancomycin aglycone (Chirobiotic VAG), ristocetin A (Chirobiotic R) or a new dimethylphenyl carbamate-derivatized β-cyclodextrin-based Cyclobond DMP. The results achieved with the different methods were compared in systematic chromatographic examinations. The effects of an organic modifier and of the mobile phase composition on the separation and the separation efficiency of different columns were investigated. The difference in enantioselective free energy between the aglycone CSP and the teicoplanin CSP for these β-lactams and β-amino acids ranged between 0.3 and −1.1 kJmol−1. Better enantioseparations were attained in most cases on the aglycone CSP.

  相似文献   

12.
Chiral separations using the macrocyclic antibiotics: a review   总被引:4,自引:0,他引:4  
The macrocyclic antibiotics have recently gained popularity as chiral selectors in CE, HPLC and TLC. The macrocyclic antibiotics used for chiral separations include the ansamycins, the glycopeptides, and the polypeptide antibiotic thiostrepton. Although not strictly considered macrocyclic antibiotics, the aminoglycosides are antibiotics that have been used for chiral separations in CE. More chiral analytes have been resolved using the glycopeptides than with the other macrocyclic antibiotics combined. The glycopeptides vancomycin, ristocetin A and teicoplanin have been used extensively as chiral selectors in CE, with ristocetin A appearing to be the most useful chiral selector followed by vancomycin and teicoplanin, respectively. The macrocyclic antibiotics have also been used as chiral bonded phases in HPLC, and HPLC stationary phases based on vancomycin, ristocetin A and teicoplanin have been commercialized. Ristocetin A seems to be the most useful glycopeptide HPLC bonded phase, but its greater expense can be a drawback. The macrocyclic antibiotics have been used with micelles to improve efficiency, provide unique selectivity, and extend the range of separations to neutral solutes. Changing the macrocyclic antibiotic used in CE or HPLC can significantly alter the enantioselectivity of the separations. In fact, the glycopeptide antibiotics are complementary to one another, where if a partial enantioresolution is obtained with one glycopeptide, there is a high probability that a baseline or better separation can be obtained with another.  相似文献   

13.
The search for new and effective chiral selectors capable of separating a wide variety of enantiomeric compounds is an ongoing process. In the past decade, macrocyclic antibiotics have proved to be an exceptionally useful class of chiral selectors for the separation of enantiomers of biological and pharmacological importance by means of HPLC, TLC and electrophoresis. More chiral analytes have been resolved through the use of glycopeptides than with all the other macrocyclic antibiotics combined (ansamycins, thiostrepton, aminoglycosides, etc.). The glycopeptides avoparcin, teicoplanin, ristocetin A and vancomycin have been extensively used as chiral selectors in the form of chiral bonded phases in HPLC, and HPLC stationary phases based on these glycopeptides have been commercialized. Teicoplanin, vancomycin, their analogs and ristocetin A seem to be the most useful glycopeptide HPLC bonded phases for the enantioseparation of proteins and unusal native and derivatized amino acids. In fact, the macrocyclic glycopeptides are to some extent complementary to one another: where partial enantioresolution is obtained with one glycopeptide, there is a high probability that baseline or better separation can be obtained with another. This review sets out to characterize the physicochemical properties of these antibiotics and their application in the enantioseparations of amino acids. The mechanism of separation, the sequence of elution of the stereoisomers and the relation to the absolute configuration are also discussed.  相似文献   

14.
Summary Reversed-phase high-performance liquid chromatographic methods were developed for the separation of the enantiomers of five glycine and twelve alanine analogues. The enantioselective separation involved two methods. The direct separations were performed on chiral stationary phases containing a macrocyclic glycopeptide antibiotic: teicoplanin (Chirobiotic T column), ristocetin A (Chirobiotic R column) or chiral crown ether (Crownpak CR(+) column). The indirect methods involved pre-column derivatization with the chiral derivatizing agents 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl isothiocyanate andN-α-(2,4-dinitro-5-fluorophenyl)-L-alaninamide (Marfey's reagent). The different methods were compared in systematic chromatographic examinations. The effects of organic modifier content, mobile phase composition, pH and flow rate on the separation were investigated. Presented at Balaton Symposium '01 on High-Performance Separation Methods, Siófok, Hungary, September 2–4, 2001  相似文献   

15.
Berkecz  R.  Ilisz  I.  Forr&#;  E.  F&#;l&#;p  F.  Armstrong  D. W.  P&#;ter  A. 《Chromatographia》2006,63(13):S29-S35
Direct reversed-phase high-performance liquid chromatographic methods were developed for the separation of enantiomers of β-lactams. The enantiomers of 7 aryl-substituted β-lactams were separated on chiral stationary phases containing the macrocyclic glycopeptide antibiotic teicoplanin (Chirobiotic T) and teicoplanin aglycone (Chirobiotic TAG) at 10-°C increments in the range 5–45 °C, using different compositions of 0.1% aqueous triethylammonium acetate (pH 4.1)/methanol (v/v) as mobile phase. The mobile phase composition and temperature were varied to achieve baseline resolutions in a single chromatographic run. The dependence of the natural logarithms of the selectivity factors ln α on the inverse of temperature, 1/T, was used to determine the thermodynamic data on the enantiomers. The thermodynamic data revealed that all the compounds in this study undergo separation via the same enthalpy-driven chiral recognition mechanism. The different methods were compared in systematic chromatographic examinations. The effects of the organic modifier, the mobile phase composition and the temperature on the separation were investigated.  相似文献   

16.
The development of methods for the separation of enantiomers has attracted great interest in the past 20 years, since it became evident that the potential biological or pharmacological applications are mostly restricted to one of the enantiomers. In the past decade, macrocyclic antibiotics have proved to be an exceptionally useful class of chiral selectors for the separation of enantiomers of biological and pharmacological importance by means of high-performance liquid chromatography (HPLC), thin-layer chromatography and electrophoresis. The glycopeptides avoparcin, teicoplanin, ristocetin A and vancomycin have been extensively used as chiral selectors in the form of chiral bonded phases in HPLC, and HPLC stationary phases based on these glycopeptides have been commercialized. In fact, the macrocyclic glycopeptides are to some extent complementary to one another: where partial enantioresolution is obtained with one glycopeptide, there is a high probability that baseline or better separation can be obtained with another. This review sets out to characterize the physicochemical properties of these macrocyclic glycopeptide antibiotics and, through their application, endeavors to demonstrate the mechanism of separation on macrocyclic glycopeptides. The sequence of elution of the stereoisomers and the relation to the absolute configuration are also discussed.  相似文献   

17.
Previous work on the LC separation of peptides had shown that macrocyclic glycopeptide stationary phases to be selective for peptides of five to thirteen amino acids in length. In this work, the selectivity of the teicoplanin stationary phase is compared to that of a C18 stationary phase for seven diastereomeric enkephalin peptides. The teicoplanin stationary phase separated all seven diastereomeric enkephalin peptides in a single chromatographic run. The insertion of d-amino acids into the primary enkephalin sequence produced areas of hydrophobicity that influenced retention order on the C18 stationary phase. However, analogous trends are not observed on the teicoplanin stationary phase, which is more polar and structurally diverse. Optimization of the mobile phase and the use of a step-gradient for the enkephalin separation on the teicoplanin stationary phase is discussed. Also, the selectivity of macrocyclic glycopeptide stationary phases for peptides of 14, 28, 30, and 36 amino acids also is investigated and compared to separation on a C18 stationary phase. A method for eluting peptides with multiple basic amino acids, which tend to be strongly retained on the macrocyclic glycopeptide stationary phases, is presented.  相似文献   

18.
何义娟  李克丽  李倩  张鹏  艾萍  袁黎明 《色谱》2019,37(4):383-391
万古霉素和替考拉宁都属于糖肽类的大环抗生素,具有立体的环状结构和多个手性中心,是两种常见的手性识别材料,广泛应用于对映体的色谱手性分离分析。该文以万古霉素和替考拉宁为手性选择剂,哌嗪为单体,4,4'-二苯基甲烷二异氰酸酯(MDI)、1,6-己二异氰酸酯(HDI)和2,4-甲苯二异氰酸酯(TDI)为交联剂,通过界面聚合反应形成网状层包裹硅胶载体的方法制得6种高效液相色谱手性固定相,用于分离外消旋化合物,并与MDI直接交联万古霉素和替考拉宁在硅胶表面所得固定相进行了比较。结果表明,利用"网包法"和直接交联法制备的手性柱与商品万古霉素和替考拉宁柱之间具有互补性,均对不同的外消旋体有不同程度的拆分。  相似文献   

19.
A set of 42 chiral compounds containing stereogenic sulfur was prepared. There were 31 chiral sulfoxide compounds, three tosylated sulfilimines and eight sulfinate esters. The separations were done using five different macrocyclic glycopeptide chiral stationary phases (CSPs), namely ristocetin A, teicoplanin, teicoplanin aglycone (TAG), vancomycin and vancomycin aglycone (VAG) and seven eluents, three normal-phase mobile phases, two reversed phases and two polar organic mobile phases. Altogether the macrocyclic glycopeptide CSPs were able to separate the whole set of the 34 sulfoxide enantiomers and tosylated derivatives. Five of the eight sulfinate esters were also separated. The teicoplanin and TAG CSPs were the most effective CSPs able to resolve 35 and 33 of the 42 compounds. The three other CSPs each were able to resolve more than 27 compounds. The normal-phase mode was the most effective followed by the reversed-phase mode with methanol-water mobile phases. Few of these compounds could be separated in the polar organic mode with 100% methanol mobile phases. Acetonitrile was also not a good solvent for the resolution of enantiomers of sulfur-containing compounds, neither in the reversed-phase nor in the polar organic mode. The structure of the chiral molecules was compared to the enantioselectivity factors obtained with the teicoplanin and TAG CSP. It is shown that the polarity, volume and shape of the sulfoxide substituents influence the solute enantioselectivity factor. Changing the oxidation state of the sulfur atom from sulfoxides to sulfinate esters is detrimental to the compound's enantioselectivity. The enantiomeric retention order on the teicoplanin and TAG CSPs was very consistent: the (S)-(+)-sulfoxide enantiomer was always the less retained enantiomer. In contrast, the (R)-(-)-enantiomer was less retained by the ristocetin A, vancomycin and vancomycin aglycone columns, showing the complementarity of these CSPs. The macrocyclic glycopeptide CSPs provided broad selectivity and effective separations of chiral sulfoxides.  相似文献   

20.
RP high‐performance liquid chromatographic methods were developed for the enantioseparation of eleven unusual β2‐homoamino acids. The underivatized analytes were separated on a chiral stationary phase containing (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid as chiral selector. The effects of organic (alcoholic) and acidic modifiers, the mobile phase composition and temperature on the separation were investigated. The structures of the substituents in the α‐position of the analytes substantially influenced the retention and resolution. The elution sequence was determined in some cases: the S enantiomers eluted before the R enantiomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号