首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
Variation of packing density in particle deforming from spheres to cubes is studied. A new model is presented to describe particle deformation between different particle shapes. Deformation is simulated by relative motion of component spheres in the sphere assembly model of a particle. Random close packings of particles in deformation form spheres to cubes are simulated with an improved relaxation algorithm. Packings in both 2D and 3D cases are simulated. With the simulations, we find that the packing density increases while the particle sphericity decreases in the deformation. Spheres and cubes give the minimum (0.6404) and maximum (0.7755) of packing density in the deformation respectively. In each deforming step, packings starting from a random configuration and from the final packing of last deforming step are both simulated. The packing density in the latter case is larger than the former in two dimensions, but is smaller in three dimensions. The deformation model can be applied to other particle shapes as well.  相似文献   

2.
3.
Dense packings of chains of hard spheres possess characteristic features that do not have a counterpart in corresponding packings of monomeric spheres especially near the maximally random jammed (MRJ) state. From the modelling perspective the additional requirement that spheres keep their connectivity while maximizing the occupied volume fraction imposes severe constraints on generation algorithms of dense chain configurations. The extremely sluggish dynamics imposed by the uncrossability of chains precludes the use of deterministic or stochastic dynamics to generate all but dilute polymer packings. As a viable alternative, especially tailored chain-connectivity-altering Monte Carlo (MC) algorithms have been developed that bypass this kinetic hindrance and have actually been able to produce packings of hard-sphere chains in a volume fraction range spanning from infinite dilution up to the MRJ state. Such very dense athermal polymer packings share a number of structural features with packings of monomeric hard spheres, but also display unique characteristics due to the constraints imposed by connectivity. We give an overview of the most relevant results of our recent modeling work on packings of freely-jointed chains of tangent hard spheres about the MRJ state, local structure, chain dimensions and their scaling with density, topological constraints in the form of entanglements and knots, contact network at jamming, and entropically driven crystallization.  相似文献   

4.
We investigate the nature of randomness in disordered packings of frictional spheres. We calculate the entropy of 3D packings through the force and volume ensemble of jammed matter, a mesoscopic ensemble and numerical simulations using volume fluctuation analysis and graph theoretical methods. Equations of state are obtained relating entropy, volume fraction and compactivity characterizing the different states of jammed matter. At the mesoscopic level the entropy vanishes at random close packing, while the microscopic states contribute to a finite entropy. The entropy of the jammed system reveals that the random loose packings are more disordered than random close packings, allowing for an unambiguous interpretation of both limits.  相似文献   

5.
We report a numerical study of the close packing of monodisperse hard spheres. The close packings of hard spheres are produced by the Lubachesky-Stillinger (LS) compression algorithm and span the range from the disordered states to the ordered states. We provide quantitative evidence for the claim that the density and structural order of the arrested close packing can be determined by the compression rate, i.e., with slower rates producing denser and more ordered structures. Through deeply analyzing the structure of the resulting arrested close packings, a transition region has been identified in the plane of density and reciprocal compression rate, in between what have been historically thought of as amorphous and crystalline packings. We also find clear system size dependences in studying the structural properties of the packings from the disordered ones to the ordered ones. These detailed investigations, on the structure of the arrested close packings, may provide a link between the glassy states and the crystalline states in the hard spheres.  相似文献   

6.
A parametric method for spatially resolved measurements for velocity autocorrelation functions, R(u)(tau) = , expressed as a sum of exponentials, is presented. The method is applied to a granular flow system of 2-mm oil-filled spheres rotated in a half-filled horizontal cylinder, which is an Ornstein-Uhlenbeck process with velocity autocorrelation function R(u)(tau) = e(- ||tau ||/tau(c)), where tau(c) is the correlation time and D = tau(c) is the diffusion coefficient. The pulsed-field-gradient NMR method consists of applying three different gradient pulse sequences of varying motion sensitivity to distinguish the range of correlation times present for particle motion. Time-dependent apparent diffusion coefficients are measured for these three sequences and tau(c) and D are then calculated from the apparent diffusion coefficient images. For the cylinder rotation rate of 2.3 rad/s, the axial diffusion coefficient at the top center of the free surface was 5.5 x 10(-6) m(2)/s, the correlation time was 3 ms, and the velocity fluctuation or granular temperature was 1.8 x 10(-3) m(2)/s(2). This method is also applicable to study transport in systems involving turbulence and porous media flows.  相似文献   

7.
Dense packings of freely jointed chains of tangent hard spheres are produced by a novel Monte Carlo method. Within statistical uncertainty, chains reach a maximally random jammed (MRJ) state at the same volume fraction as packings of single hard spheres. A structural analysis shows that as the MRJ state is approached (i) the radial distribution function for chains remains distinct from but approaches that of single hard sphere packings quite closely, (ii) chains undergo progressive collapse, and (iii) a small but increasing fraction of sites possess highly ordered first coordination shells.  相似文献   

8.
Ho-Kei Chan 《哲学杂志》2013,93(31-33):4057-4069
Abstract

A hybrid helical structure of equal-sized hard spheres in cylindrical confinement was discovered as a ‘by-product’ of the recently developed sequential deposition approach [Physical Review E 84, 050302(R) (2011)] for constructing the densest possible packings of such systems. Unlike the conventional triple-helix structure where its three strands of spheres are packed densely to form triads of close-packed, mutually touching spheres, in this novel helical phase, only two of its three strands of spheres are packed in this densest arrangement and the overall structure resembles a hybrid of the single and the double helix. This article explains how this previously unknown structure can be constructed via the abovementioned sequential deposition of spheres, which involves manipulating the positions of a few spheres to create a template for the deposition process. The findings show that it is possible to discover new structures through varying only the configuration of the few spheres that form the template, where this approach relies on a sensitive dependence of the deposition-generated structures on the template.  相似文献   

9.
An event-driven molecular dynamics simulation of inelastic hard spheres contained in a cylinder and subject to strong vibration reproduces accurately experimental results [R. D. Wildman et al., Phys. Rev. Lett. 86, 3304 (2001)] for a system of vibrofluidized glass beads. In particular, we are able to obtain the velocity field and the density and temperature profiles observed experimentally. In addition, we show that the appearance of convection rolls is strongly influenced by the value of the sidewall-particle restitution coefficient. Suggestions for observing more complex convection patterns are proposed.  相似文献   

10.
We analyze the large-scale structure and fluctuations of jammed packings of size-disperse spheres, produced in a granular experiment as well as numerically. While the structure factor of the packings reveals no unusual behavior for small wave vectors, the compressibility displays an anomalous linear dependence at low wave vectors and vanishes when q→0. We show that such behavior occurs because jammed packings of size-disperse spheres have no bulk fluctuations of the volume fraction and are thus hyperuniform, a property not observed experimentally before. Our results apply to arbitrary particle size distributions. For continuous distributions, we derive a perturbative expression for the compressibility that is accurate for polydispersity up to about 30%.  相似文献   

11.
Collections of random packings of rigid disks and spheres have been generated by computer using a previously described concurrent algorithm. Particles begin as infinitesimal moving points, grow in size at a uniform rate, undergo energy-onconserving collisions, and eventually jam up. Periodic boundary conditions apply, and various numbers of particles have been considered (N2000 for disks,N8000 for spheres). The irregular disk packings thus formed are clearly polycrystalline with mean grain size dependent upon particle growth rate. By contrast, the sphere packings show a homogeneously amorphous texture substantially devoid of crystalline grains. This distinction strongly influences the respective results for packing pair correlation functions and for the distributions of particles by contact number. Rapidly grown disk packings display occasional vacancies within the crystalline grains; no comparable voids of such distinctive size have been found in the random sphere packings. Rattler particles free to move locally but imprisoned by jammed neighbors occur in both the disk and sphere packings.This paper is dedicated to Jerry Percus on the occasion of his 65th birthday.  相似文献   

12.
It is sometimes proposed that cunning packings of spheres could account for the structure of a metallic amorphous material. For such packings, relaxation is thought to result only in a small improvement of local distortions or stresses due to the building of the model, without changing much the radial distribution functions of the atoms.From this issue, it seems rather that any initial packing of spheres do reach (by relaxation in a Lennard-Jones potential) the f.c.c. structure or a reproducible “amorphous state”.  相似文献   

13.
14.
We performed numerical simulations of one-bead collision on the surface of a static granular medium. The simulations have been done for two- and three-dimensional packings of beads. The effect of the incident bead velocity, the shot angle, the mechanical parameters and the packing structure are analyzed for ordered and disordered 2D packings and only disordered 3D packings. The 2D results are in good agreement with experimental available data. The 3D simulations give good preliminaries results about the shock-wave propagation through the stacking and provides new insights in the ejection process (“splash function”).  相似文献   

15.
Recent simulations indicate that ellipsoids can pack randomly more densely than spheres and, remarkably, for axes ratios near 1.25:1:0.8 can approach the densest crystal packing (fcc) of spheres, with a packing fraction of 74%. We demonstrate that such dense packings are realizable. We introduce a novel way of determining packing density for a finite sample that minimizes surface effects. We have fabricated ellipsoids and show that, in a sphere, the radial packing fraction phi(r) can be obtained from V(h), the volume of added fluid to fill the sphere to height h. We also obtain phi(r) from a magnetic resonance imaging scan. The measurements of the overall density phi(avr), phi(r) and the core density phi(0) = 0.74 +/- 0.005 agree with simulations.  相似文献   

16.
We present measurements of the Nusselt number N as a function of the Rayleigh number R in cylindrical cells with aspect ratios 0. 510(7) they are consistent with N = asigma-1/12R1/4+bsigma-1/7R3/7 as proposed by Grossmann and Lohse for sigma greater, similar2.  相似文献   

17.
This paper describes two algorithms for the generation of random packings of spheres with arbitrary diameter distribution. The first algorithm is the force‐biased algorithm of Mościński and Bargieł. It produces isotropic packings of very high density. The second algorithm is the Jodrey‐Tory sedimentation algorithm, which simulates successive packing of a container with spheres following gravitation. It yields packings of a lower density and of weak anisotropy. The results obtained with these algorithms for the cases of log‐normal and two‐point sphere diameter distributions are analysed statistically, i. e. standard characteristics of spatial statistics such as porosity (or volume fraction), pair correlation function of the system of sphere centres and spherical contact distribution function of the set‐theoretical union of all spheres are determined. Furthermore, the mean coordination numbers are analysed. These results are compared for both algorithms and with data from the literature based on other numerical simulations or from experiments with real spheres.  相似文献   

18.
The wall shear rate distribution P(gamma) is investigated for pressure-driven Stokes flow through random arrangements of spheres at packing fractions 0.1< or =varphi< or =0.64. For dense packings, P(gamma) is monotonic and approximately exponential. As varphi-->0.1, P(gamma) picks up additional structure which corresponds to the flow around isolated spheres, for which an exact result can be obtained. A simple expression for the mean wall shear rate is presented, based on a force-balance argument.  相似文献   

19.
On the basis of deterministic fractals and the Rotne-Prager hydrodynamic interaction tensor, we confirm the asymptotic as well as the finite size scaling of the friction coefficient lambda of a self-similar structure. The fractal assembly is made of N spheres with its dimension varying from D < 1 to D = 3. The number of spheres can be as high as N approximately O(10(4)). The asymptotic scaling behavior of the friction coefficient per sphere is lambda approximately N(1/D-1) for D > 1, lambda approximately (lnN)(-1) for D = 1, and lambda approximately N(0) for D < 1. The crossover behavior indicates that while in the regime of D > 1 the hydrodynamic screening effect grows with the size, for D<1 it is limited in a finite range, which decays with decreasing D.  相似文献   

20.
We study experimentally the jamming phenomenon of granular flow of monodisperse disks of D = 5 mm diameter in a two-dimensional hopper with opening R. The jamming probability J(d) is measured where d identical withR/D. We found that J(d) decreases from 1 to zero when d increases from 2 to 5. From observing the disk configurations of the arch in the jamming events, the jamming probability can be explained quantitatively by treating the arch as the trajectory of a restricted random walker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号