首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Based on the theory of semi‐global piecewise C2 solutions to 1D quasilinear wave equations, the local exact boundary controllability of nodal profile for quasilinear wave equations in a planar tree‐like network of strings with general topology is obtained by a constructive method. The principles of providing nodal profiles and of choosing and transferring boundary controls are presented, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
For 1‐D first order quasilinear hyperbolic systems without zero eigenvalues, based on the theory of exact boundary controllability of nodal profile, using an extension method, the exact controllability of nodal profile can be realized in a shorter time by means of additional internal controls acting on suitably small space‐time domains. On the other hand, using a perturbation method, the exact controllability of nodal profile for 1‐D first order quasilinear hyperbolic systems with zero eigenvalues can be realized by additional internal controls to the part of equations corresponding to zero eigenvalues. Furthermore, by adding suitable internal controls to all the equations on suitable domains, the exact controllability of nodal profile for systems with zero eigenvalues can be realized in a shorter time.  相似文献   

3.
In this paper, we consider the asymptotic stability of the exact boundary controllability of nodal profile for 1D quasi-linear wave equations. First, for 1D quasi-linear hyperbolic systems with zero eigenvalues, we establish the existence and uniqueness of semiglobal classical solution to the one-sided mixed initial-boundary value problem on a semibounded initial axis and discuss the asymptotic behavior of the corresponding solutions under different hypotheses on the initial data. Based on these results, we obtain the asymptotic stability of the exact boundary controllability of nodal profile for 1D quasi-linear wave equations on a semibounded time interval.  相似文献   

4.
Based on the local exact boundary controllability for 1‐D quasilinear wave equations, the global exact boundary controllability for 1‐D quasilinear wave equations in a neighborbood of any connected set of constant equilibria is obtained by an extension method. Similar results are also given for a kind of general 1‐D quasilinear hyperbolic equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the exact boundary controllability of nodal profile is established for quasilinear hyperbolic systems with general nonlinear boundary and interface conditions in a tree‐like network with general topology. The basic principles for giving nodal profiles and for choosing boundary controls are presented, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
By means of a direct and constructive method based on the theory of semi‐global C2 solution, the local exact boundary observability and an implicit duality between the exact boundary controllability and the exact boundary observability are shown for 1‐D quasilinear wave equations with various boundary conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
在此综述性文章中,我们将回顾关于节点状态的精确边界能控性的已有结果,并对此主题之进一步研究给出若干建议  相似文献   

8.
Based on the theory of semi-global classical solutions to quasilinear hyperbolic systems, the authors apply a unified constructive method to establish the local exact boundary(null) controllability and the local boundary(weak) observability for a coupled system of 1-D quasilinear wave equations with various types of boundary conditions.  相似文献   

9.
In this paper, by means of a constructive method based on the existence and uniqueness of the semi‐global C2 solution, we establish the local exact boundary controllability for a kind of second‐order quasilinear hyperbolic systems. As an application, we obtain the one‐sided local exact boundary controllability for the first‐order quasilinear hyperbolic systems of diagonal form with boundary conditions in which the diagonal variables corresponding to the positive eigenvalues and those corresponding to the negative eigenvalues are decoupled. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Based on the theory of semi-global C 1 solution and the local exact boundary controllability for first-order quasilinear hyperbolic systems, the local exact boundary controllability for a kind of second-order quasilinear hyperbolic systems is obtained by a constructive method.  相似文献   

11.
In this paper, we first show that quite different from the autonomous case, the exact boundary controllability for non‐autonomous wave equations possesses various possibilities. Then we adopt a constructive method to establish the exact boundary controllability for one‐dimensional non‐autonomous quasilinear wave equations with various types of boundary conditions. Finally, we apply the results to multi‐dimensional quasilinear wave equation with rotation invariance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Based on the theory of exact boundary controllability of nodal profile for hyperbolic systems, the authors propose the concept of exact boundary controllability of partial nodal profile to expand the scope of applications. With the new concept, we can shorten the controllability time, save the number of controls, and increase the number of charged nodes with given nodal profiles. Furthermore, we introduce the concept of in-situ controlled node to deal with a new situation that one node can be charged and controlled simultaneously. The minimum number of boundary controls on the entire tree-like network is determined by using the concept of ‘degree of freedom of charged nodes’ introduced. And the concept of ‘control path’ is introduced to appropriately divide the network, so that we can determine the infimum of controllability time. General frameworks of constructive proof are given on a single interval, a star-like network, a chain-like network and a planar tree-like network for linear wave equation(s) with Dirichlet, Neumann, Robin and dissipative boundary conditions to establish a complete theory on the exact boundary controllability of partial nodal profile.  相似文献   

13.
By equivalently replacing the dynamical boundary condition by a kind of nonlocal boundary conditions, and noting a hidden regularity of solution on the boundary with a dynamical boundary condition, a constructive method with modular structure is used to get the local exact boundary controllability for 1‐D quasilinear wave equations with dynamical boundary conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
For 1‐D quasilinear wave equations with different types of boundary conditions, based on the theory of the local exact boundary controllability, using an extension method, the author establishes the exact controllability in a shorter time by means of internal controls acting on suitable domains. In particular, the exact controllability can be realized only by internal controls, and the control time can be arbitrarily small. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper the local exact boundary controllability for quasilinear wave equations on a planar tree-like network of strings is established and the number of boundary controls is equal to the number of simple nodes minus 1.  相似文献   

16.
高阶拟线性双曲型方程的精确边界能控性   总被引:1,自引:0,他引:1  
By means of the existence and uniqueness of semi-global C^1 solution to the mixed initial-boundary value problem with general nonlinear boundary conditions for first order quasilinear hyperbolic systems with zero eigenvalues ,the local exact boundary controllability for higher order quasilinear hyperbolic equations is established.  相似文献   

17.
In the present paper, we study energy decay and exact boundary controllability for a system of n one-dimensional linear wave equations coupled in parallel. The control obtained is a square integrable of the Neuman type for initial data with finite energy. The controllability time is near optimal value. We treat the case of control in the whole boundary and also in part of it.  相似文献   

18.
This paper deals with the exact boundary controllability and the exact boundary synchronization for a 1-D system of wave equations coupled with velocities. These problems can not be solved directly by the usual HUM method for wave equations, however, by transforming the system into a first order hyperbolic system, the HUM method for 1-D first order hyperbolic systems, established by Li-Lu(2022) and Lu-Li(2022), can be applied to get the corresponding results.  相似文献   

19.
利用一阶拟线性双曲组混合初边值问题的精确能控性理论,通过对边界速度或压强的控制,实现了一维绝热流方程组的精确边界能控性.  相似文献   

20.
In this paper, for a coupled system of one‐dimensional wave equations with Dirichlet boundary controls, we show that the controllability of classical solutions implies the controllability of weak solutions. This conclusion can be applied in proving some results that are hardly obtained by a direct way in the framework of classical solutions. For instance, we strictly derive the necessary conditions for the exact boundary synchronization by two groups in the framework of classical solutions for the coupled system of wave equations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号