首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The flow behavior in hydrocyclones is quite complex. In this study, the computational fluid dynamics (CFD) method was used to simulate the flow fields inside a hydrocyclone in order to investigate its separation efficiency. In the computational fluid dynamics study of hydrocyclones, the air-core dimension is a key to predicting the mass split between the underflow and overflow. In turn, the mass split influences the prediction of the size classification curve. Three models, the model, the Reynolds stress model (RSM) without considering the air-core, and the Reynolds stress turbulence model with the volume of fluid (VOF) multiphase model for simulating the air-core, were compared in terms of their predictions of velocity, axial and tangential velocity distributions, and separation proportion. The RSM with air-core simulation model, since it reproduces some detailed features of the turbulence and multiphase, clearly predicted the experimental data more closely than did the other two models.  相似文献   

2.
单柱单锥型液—液旋流分离管内流场的LDV诊断   总被引:2,自引:0,他引:2  
应用二维激光多普勒仪(LDV)对一种单柱单锥型液-液旋流分离管内流场进行了测量,考察了流量、溢流比、压力比和气芯等参数对流场的影响。测量结果表明:切向速度分布呈典型的Rankine涡结构,沿轴向衰减很少,表明所用锥角是合适的;因该旋流管的水力直径较大,切向速度的总体水平较低,由于对了离特性带来了不利影响。此外,没有观察到切向速度分布的的双峰分布现象。轴向速度的总体水平较低,尤其是在锥形管的上游更为  相似文献   

3.
Influence of geometry on separation efficiency in a hydrocyclone   总被引:2,自引:0,他引:2  
A numerical study of the gas–liquid–solid multiphase flow in hydrocyclones is presented. Three models of turbulence, the RNG kε model, the Reynolds stress model and Large eddy simulation with the volume of fluid model (VOF) multiphase model for simulating air core are compared in order to predict axial and tangential velocity distributions. This presentation is mainly aimed at identifying an optimal method, used to study effective parameters, based on which, eventually, effect of inlet flow rate variations and body dimension variations such as underflow diameter, overflow diameter and cone angle on the separation performance and pressure drop are investigated. The results are then used in the simulation of particle flow described by the stochastic Lagrangian model. The results suggest that the predicted size classifications are approximately similar to those of RSM and LES methods. Predictions using the RSM model are found in agreement with experimental results with a marginal error within the range of 4 to 8%. Proceeding model validation, parametric studies have been carried out concerning the influence of velocity inlet, particle size and body dimension such as underflow and overflow diameter and cone angle. The predictions demonstrate that the flow fields in the hydrocyclones with different sizes and lengths are different, which yields different performances.  相似文献   

4.
The hydrocyclone model (uniform helical flow in a cone) assumed by the present author in [1] only approximately reflects the specific nature of the fluid flow within this device. In real hydrocyclones a small portion of the fluid, together with the solid particles thrown toward the wall, leave through the nozzle at the cone vertex, while the major portion of the fluid leaves the hydrocyclone through a cylindrical diaphragm inserted through the center of the base to a definite depth. With the aim of clarifying the effect of the diaphragm on the flow structure in the hydrocyclone, the present study solves the problem of uniform helical motion of a fluid in a cone with diaphragm.  相似文献   

5.
A three-component accelerometer balance system is used to study the drag reduction effect of an aerodisc on large angle blunt cones flying at hypersonic Mach numbers. Measurements in a hypersonic shock tunnel at a freestream Mach number of 5.75 indicate more than 50% reduction in the drag coefficient for a 120° apex angle blunt cone with a forward facing aerospike having a flat faced aerodisc at moderate angles of attack. Enhancement of drag has been observed for higher angles of attack due to the impingement of the flow separation shock on the windward side of the cone. The flowfields around the large angle blunt cone with aerospike assembly flying at hypersonic Mach numbers are also simulated numerically using a commercial CFD code. The pressure and density levels on the model surface, which is under the aerodynamic shadow of the flat disc tipped spike, are found very low and a drag reduction of 64.34% has been deduced numerically.  相似文献   

6.
The gasoline spray characteristics of a pressure-swirl injector were investigated with various exit plane tilts. The analysis focused on the correlation between tilt angle and flow angle. Mie-scattering technique and phase Doppler anemometry were employed to analyze the macroscopic spray development and droplet size distribution of the spray. An analytical method for mass flux estimation was applied to understand the velocity distribution at the nozzle exit. The results showed that the spray shape and velocity distribution of the spray were more asymmetrical at high tilt angles. In particular, an opened hollow cone spray was formed when the tilt angle is greater than the complementary flow angle. The pressure drop inside the spray, one of the crucial factors for the swirl spray collapse at various surrounding conditions, was attenuated in this opened hollow cone spray since the pressure inside the spray was assimilated to the surrounding air pressure. The spray collapse at high fuel temperature and back pressure conditions did not appear when the tilt angle is larger than the complementary flow angle due to the reduced pressure drop inside the spray. However, tilt angle should be optimized to fulfill the requirements of spray robustness and avoid the locally rich area. The droplet size of 70° tilted nozzle spray shows a value similar to that of the original swirl spray in the plane that includes nozzle axis and the major axis of exit surface ellipse (Major axis plane) while it shows an increased value in the plane that includes nozzle axis and the minor axis of exit surface ellipse (Minor axis plane).  相似文献   

7.
The picture of ideal gas flow around cones at zero and low angles of attack has been well studied by using approximate methods [1], and results for high angles of attack have been obtained mainly numerically [2–7]. At high angles of attack it is sensible to examine inviscid flow only up to some generator on the downwind side of the cone at which boundary-layer separation occurs. Hence, the domain where the flow can be considered inviscid yields the main contribution to the magnitude of the aerodynamic forces and the heat fluxes [5, 9]. A picture of the supersonic flow around a pointed elliptical cone is obtained in this paper by the numerical solution of the gasdynamics equations. The whole flow domain is computed at low angles of attack while the solution at high angles is obtained in a domain bounded by some surface of three-dimensional type [10]. The dependence of the flow parameters on the angle of attack is studied when the shock is attached to the cone apex. In contrast to a circular cone, at low angles of attack two spreading lines occur on the surface of an elliptical cone, to which the maximum pressure corresponds. As the angle of attack increases, these lines come together and merge at a certain time. At high angles of attack the flow picture is analogous to a circular cone with a pressure maximum in the plane of symmetry.  相似文献   

8.
双柱单锥型液-液旋流管内流场的激光诊断   总被引:2,自引:0,他引:2  
陆耀军  沈熊  周力行 《力学学报》1997,29(4):395-405
应用激光测速仪,对一种双柱单锥型液 液旋流管内的流动结构,进行了全场范围内的多工况流动诊断研究.揭示出其切向速度由内旋流区和外旋流区构成,其中内旋流区中的速度分布符合准强制涡关系,外旋流区中的速度分布符合准自由涡关系;轴向速度由上行流动区和下行流动区构成,两者之间在直管段以零速点作分界,在锥体段则以零速区作过渡并伴随有一定的回流出现,且该过渡区或回流区的大小随锥体截面的收缩而减小,直到进入直管段后消失;各湍流量的分布以管芯处最大向外逐渐减小,沿轴向是直管段中的湍流度大于锥体段中的湍流度,而且湍流度在旋流管内具有各向异性的特性.  相似文献   

9.
对分离效率与液相流速、油水比例和旋流器级数之间的关系进行了系统的实验研究. 通过受力分 析从理论上对细颗粒易受参数影响的原因进行了阐述,并根据量纲分析和实验数据得到了分 离效率与$Re$数和$St$数之间的函数关系. 在此基础上,对液固旋流器的现 场应用提出了有价值的建议.  相似文献   

10.
The presence of solid particles in the flow of hypersonic wind tunnels damages the appearance of the experiment models in the wind tunnel and influences the accuracy of experimental results. The design of a highly efficient gas–solid separator was therefore undertaken. Particle trajectory imaging methods were used to measure trajectories under different conditions. The flow field and particle movement characteristics for different head angles (HAs) and separation tooth angles (STAs), inlet velocities, and the exhaust gas outlet pressures in the separator, were calculated using simulations based on the discrete phase model. The particle separation efficiency, pressure loss, and flow loss resulting from different structural parameters were also studied. In line with experimental observations, the characteristic angle of particle movements in the separator and the separation efficiency of the separator were found to increase with decreasing HA and with increasing STA. Separation efficiency improves with increasing inlet velocity and with increasing negative pressure of the exhaust gas outlet; however, the corresponding pressure loss and the flow rate of the waste gas also increased.  相似文献   

11.
The solution of the problem of fluid flow inside a cone with a small vertex angle is obtained in closed form. The conditions of occurrence of singular separation are considered within the framework of conical flow theory. A class of conical flows in which the vorticity is transported along streamlines of the potential velocity component is detected.Quasi-conical incompressible fluid flow, i.~e. a flow inside and outside an axisymmetric body with power-law generators is defined by analogy with supersonic compressible fluid flow. The conditions under which the effect of vorticity and swirling is significant are found as a result of an inspection analysis. An approximate solution of the problem of fluid flow inside a zero corner is found.A coordinate expansion representing a plane analog of conical flow is constructed in the neighborhood of the separation point of a creeping flow on a smooth surface.  相似文献   

12.
Numerical simulation is used to study the dynamics of non-Newtonian free-surface flow in a cylindrical-conical hydrocyclone. For different angles of taper of the conical section of the hydrocyclone, the pressure and velocity distributions are calculated, together with the dependence of the fluid film thickness on the axial coordinate. The effect of the rheological properties of the fluid and the controlling similarity parameters on the flow dynamics is studied.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, 2005, pp. 102–112.Original Russian Text Copyright © 2005 by Yablonskii.  相似文献   

13.
The advantage of solar sails in deep space exploration is that no fuel consumption is required. The heliocentric distance is one factor influencing the solar radiation pressure force exerted on solar sails. In addition, the solar radiation pressure force is also related to the solar sail orientation with respect to the sunlight direction. For an ideal flat solar sail, the cone angle between the sail normal and the sunlight direction determines the magnitude and direction of solar radiation pressure force. In general, the cone angle can change from 0° to 90°. However, in practical applications, a large cone angle may reduce the efficiency of solar radiation pressure force and there is a strict requirement on the attitude control. Usually, the cone angle range is restricted less more than an acute angle (for example, not more than 40°) in engineering practice. In this paper, the time-optimal transfer trajectory is designed over a restricted range of the cone angle, and an indirect method is used to solve the two point boundary value problem associated to the optimal control problem. Relevant numerical examples are provided to compare with the case of an unrestricted case, and the effects of different maximum restricted cone angles are discussed. The results indicate that (1) for the condition of a restricted cone-angle range the transfer time is longer than that for the unrestricted case and (2) the optimal transfer time increases as the maximum restricted cone angle decreases.  相似文献   

14.
Micro Air Vehicles (MAVs) can be difficult to control in the outdoor environment as they fly at relatively low speeds and are of low mass, yet exposed to high levels of freestream turbulence present within the Atmospheric Boundary Layer. In order to examine transient flow phenomena, two turbulence conditions of nominally the same longitudinal integral length scale (Lxx/c?=?1) but with significantly different intensities (Ti?=?7.2?% and 12.3?%) were generated within a wind tunnel; time-varying surface pressure measurements, smoke flow visualization, and wake velocity measurements were made on a thin flat plate airfoil. Rapid changes in oncoming flow pitch angle resulted in the shear layer to separate from the leading edge of the airfoil even at lower geometric angles of attack. At higher geometric angles of attack, massive flow separation occurred at the leading edge followed by enhanced roll up of the shear layer. This lead to the formation of large Leading Edge Vortices (LEVs) that advected at a rate much lower than the mean flow speed while imparting high pressure fluctuations over the airfoil. The rate of LEV formation was dependent on the angle of attack until 10° and it was independent of the turbulence properties tested. The fluctuations in surface pressures and consequently aerodynamic loads were considerably limited on the airfoil bottom surface due to the favorable pressure gradient.  相似文献   

15.
Time-resolved surface pressure measurements are used to experimentally investigate characteristics of separation and transition over a NACA 0018 airfoil for the relatively wide range of chord Reynolds numbers from 50,000 to 250,000 and angles of attack from 0° to 21°. The results provide a comprehensive data set of characteristic parameters for separated shear layer development and reveal important dependencies of these quantities on flow conditions. Mean surface pressure measurements are used to explore the variation in separation bubble position, edge velocity in the separated shear layer, and lift coefficients with angle of attack and Reynolds number. Consistent with previous studies, the separation bubble is found to move upstream and decrease in length as the Reynolds number and angle of attack increase. Above a certain angle of attack, the proximity of the separation bubble to the location of the suction peak results in a reduced lift slope compared to that observed at lower angles. Simultaneous measurements of the time-varying component of surface pressure at various spatial locations on the model are used to estimate the frequency of shear layer instability, maximum root-mean-square (RMS) surface pressure, spatial amplification rates of RMS surface pressure, and convection speeds of the pressure fluctuations in the separation bubble. A power-law correlation between the shear layer instability frequency and Reynolds number is shown to provide an order of magnitude estimate of the central frequency of disturbance amplification for various airfoil geometries at low Reynolds numbers. Maximum RMS surface pressures are found to agree with values measured in separation bubbles over geometries other than airfoils, when normalized by the dynamic pressure based on edge velocity. Spatial amplification rates in the separation bubble increase with both Reynolds number and angle of attack, causing the accompanying decrease in separation bubble length. Values of the convection speed of pressure fluctuations in the separated shear layer are measured to be between 35 and 50% of the edge velocity, consistent with predictions of linear stability theory for separated shear layers.  相似文献   

16.
A new method of interpreting the signals from triple-sensor thermal anemometer probes has been developed based on fast solution for all the roots of the non-linear Jorgensen (1971) equations describing the directional response of each cylindrical sensor. The sensors can be oriented at arbitrary angles to each other, but always within a range of probe geometries that keep prong interference and thermal wake interference below acceptable levels. The properties of a class of non-orthogonal symmetric tetrahedral probe geometries are studied in relation to the range of flow vector angles that can be measured, the sensitivity of the probe with respect to changes in flow angle, and the sensitivity of the computed velocity components due to angular errors associated with the construction of the probe. The solutions of Jorgensen's equations are inherently multiple-valued, but if the velocity vector is restricted to be within a cone of angles, they are unique. It is shown that measurements with non-orthogonal triple sensor signals are sensitive to angular deviations of a few degrees of the sensor angles from the nominally orthogonal probe geometry, indicating the need of a non-orthogonal algorithm. The mean, rms, Reynolds stress, and power spectrum of the velocity in fully developed turbulent pipe flow were measured using a specially designed triple sensor probe and the proposed algorithm.Presently with the Dept. of Mechanical Engineering at The University of Iowa  相似文献   

17.
Analytic solutions for the unsteady flow in a circular sector duct are found using series sums of Bessel integrals. For starting flow due to a step pressure gradient, the velocity profile is initially flat, then approaches the rounded steady state shape in a time scale proportional to the square of opening angle of the sector. For oscillatory flow, the velocity is quasi-steady for low frequencies, but shows “annular effect” at large frequencies. Increased opening angle increases the amplitude and the phase lag. In all cases, the shear stress at the apex is zero for acute sector angles but becomes infinite for obtuse sector angles.  相似文献   

18.
The generation of high-speed liquid (water and diesel fuel) jets in the supersonic range using a vertical single-stage powder gun is described. The effect of projectile velocity and mass on the jet velocity is investigated experimentally. Jet exit velocities for a set of nozzle inner profiles (e.g. straight cone with different cone angles, exponential, hyperbolic etc.) are compared. The optimum condition to achieve the maximum jet velocity and hence better atomization and mixing is then determined. The visual images of supersonic diesel fuel jets (velocity about 2000 m/s) were obtained by the shadowgraph method. This provides better understanding of each stage of the generation of the jets and makes the study of their characteristics and the potential for auto-ignition possible. In the experiments, a pressure relief section has been used to minimize the compressed air wave ahead of the projectile. To clarify the processes inside the section, additional experiments have been performed with the use of the shadowgraph method, showing the projectile travelling inside and leaving the pressure relief section at a velocity of about 1100 m/s. Received 23 January 2001 / Accepted 2 July 2001  相似文献   

19.
Hydrodynamic characteristics of fluidization in a conical or tapered bed differ from those in a columnar bed because the superficial velocity in the bed varies in the axial direction. Fixed and fluidized regions could coexist and sharp variations in pressure drop could occur, thereby giving rise to a noticeable pressure drop-flow rate hysteresis loop under incipient fluidization conditions. To explore these unique properties, several experiments were carried out using homogeneous, well-mixed, ternary mixtures with three dif- ferent particle sizes at varying composition in gas-solid conical fluidized beds with varying cone angles. The hydrodynamic characteristics determined include the minimum fluidization velocity, bed fluctuation, and bed expansion ratios. The dependence of these quantities on average particle diameter, mass fraction of the fines in the mixture, initial static bed height, and cone angle is discussed. Based on dimensional analysis and factorial design, correlations are developed using the system parameters, i.e. geometry of the bed (cone angle), particle diameter, initial static bed height, density of the solid, and superficial velocity of the fluidizing medium. Experimental values of minimum fluidization velocity, bed fluctuation, and bed expansion ratios were found to agree well with the developed correlations.  相似文献   

20.
In this paper we investigate local adaptive refinement of unstructured hexahedral meshes for computations of the flow around the DU91 wind turbine airfoil. This is a 25% thick airfoil, found at the mid‐span section of a wind turbine blade. Wind turbine applications typically involve unsteady flows due to changes in the angle of attack and to unsteady flow separation at high angles of attack. In order to obtain reasonably accurate results for all these conditions one should use a mesh which is refined in many regions, which is not computationally efficient. Our solution is to apply an automated mesh adaptation technique. In this paper we test an adaptive refinement strategy developed for unstructured hexahedral meshes for steady flow conditions. The automated mesh adaptation is based on local flow sensors for pressure, velocity, density or a combination of these flow variables. This way the mesh is refined only in those regions necessary for high accuracy, retaining computational efficiency. A validation study is performed for two cases: attached flow at an angle of 6° and separated flow at 12°. The results obtained using our adaptive mesh strategy are compared with experimental data and with results obtained with an equally sized non‐adapted mesh. From these computations it can be concluded that for a given computing time, adapted meshes result in solutions closer to the experimental data compared to non‐adapted meshes for attached flow. Finally, we show results for unsteady computations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号