首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fe3+-doped TiO2 film deposited on fly ash cenosphere (Fe-TiO2/FAC) was successfully synthesized by the sol-gel method. These fresh photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analyses (TGA). The XRD results showed that Fe element can maintain metastable anatase phase of TiO2, and effect of temperature showed rutile phase appears in 650 °C for 0.01% Fe-TiO2/FAC. The SEM analysis revealed the Fe-TiO2 films on the surface of a fly ash cenosphere with a thickness of 2 μm. The absorption threshold of Fe-TiO2/FACs shifted to a longer wavelength compared to the photocatalyst without Fe3+-doping in the UV-vis absorption spectra. The photocatalytic activity and kinetics of Fe-TiO2/FAC with varying the iron content and the calcination temperatures were investigated by measuring the photodegradation of methyl blue (MB) during visible light irradiation. Compared with TiO2/FAC and Fe3+-doped TiO2 powder (Fe-TiO2), the degradation ratio using Fe-TiO2/FAC increased by 33% and 30%, respectively, and the best calcined temperature was 450 °C and the optimum doping of Fe/Ti molar ratio was 0.01%. The Fe-TiO2/FAC particles can float in water due to the low density of FAC in favor of phase separation to recover these photocatalyst after the reaction, and the recovery test shows that calcination contributes to regaining photocatalytic activity of Fe-TiO2/FAC photocatalyst.  相似文献   

2.
The iron(III)-ion doped TiO2 (Fe3+-TiO2) with different doping Fe3+ content were prepared via a sol-gel method. The as-prepared Fe3+-TiO2 nanoparticles were investigated by means of surface photovoltage spectroscopy (SPS), field-induced surface photovoltage spectroscopy (FISPS), and the photoelectrochemical properties of Fe3+-TiO2 catalysts with different Fe3+ content are performed by electrical impedance spectroscopy (EIS) as well as photocatalytic degradation of RhB are studied under illuminating. Based on the experiment results, the mechanism of photoinduced carriers separation and recombination of Fe3+-TiO2 was revealed: that is, the Fe3+ captures the photoinduced electrons, inhibiting the recombination of photoinduced electron-hole pairs, this favors to the photocatalytic reaction at low doping concentration (Fe/Ti ≤ 0.03 mol%); while Fe3+ dopant content exceeds 0.03 mol%, Fe2O3 became the recombination centers of photoinduced electrons and holes because of that the interaction of Fe2O3 with TiO2 leads to that the photoinduced electrons and holes of TiO2 transfer to Fe2O3 and recombine quickly, which is unfavorable to the photocatalytic reaction.  相似文献   

3.
The nano-structured Fe(III)-doped TiO2 photocatalysts with anatase phase have been developed for the oxidation of non-biodegradable different organic dyes like methyl orange (MO), rhodamine B (RB), thymol blue (TB) and bromocresol green (BG) using UV-Hg-lamp. The different compositions of FexTi1−xO2 (x = 0.005, 0.01, 0.05, and 0.1) nanocatalysts synthesized by chemical method (CM), have been characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectra, specific surface area (BET), transmission electronic microscopy (TEM) analysis, XPS, ESR and zeta potential. From XRD analysis, the results indicate that all the compositions of Fe(III) doped in TiO2 catalysts gives only anatase phase not rutile phase. For complete degradation of all the solutions of the dyes (MO, RB, TB, and BG), the composition with x = 0.005 is more photoactive compared all other compositions of FexTi1−xO2, and degussa P25. The decolorization rate of different dyes decreases as Fe(III) concentration in TiO2 increases. The energy band gap of Fe(III)-doped TiO2 is found to be 2.38 eV. The oxidation state of iron has been found to be 3+ from XPS and ESR show that Fe3+ is in low spin state.  相似文献   

4.
In this work, the mechanism of enhanced photocatalysis of TiO2 with Fe3+ was studied using Sulfadiazine (SD) as the model compound. Results indicated that degradation rate of SD was enhanced by the addition of Fe3+ in TiO2 suspension. The crystalline structure of TiO2 particles was stable in suspensions. The hydroxyl radical generated by TiO2/Fe3+ (both TiO2 and Fe3+) photocatalysis was in a higher yield. Moreover, Fe2+ was found not to give an obvious impact on the SD degradation in TiO2 suspension, whereas Fe3+ had a notable effect. The adsorption amount of TiO2 was greatly enhanced by the addition of Fe3+ in suspensions. Finally, an interaction model of SD degradation in TiO2 suspension containing Fe3+ was also proposed by investigating of surface behaviors of TiO2 particles. It will be beneficial to use Fe3+ as the electron acceptors on the surface of TiO2 particles, which helps to improve the yield of hydroxyl radical.  相似文献   

5.
The magnetic and structural characterization of Ti1−xFexO2 (x=0.025, 0.05, 0.07, 0.125, and 0.15) samples prepared by mechano-synthesis using TiO2 and Fe2O3 as starting materials are reported. XANES measurements performed at the Fe K-edge show that Fe ions are in 3+ oxidation state in the 7 at% Fe-doped sample and in a mixture of 2+ and 3+ oxidation states in the other samples. EXAFS results show the incorporation of Fe ions substituting Ti ones in the rutile TiO2 structure. They also reveal a strong correlation between the number of oxygen nearest neighbours and the Fe2+ fraction, i.e the number of oxygen near neighbours decreases when the Fe2+ fraction increases. All samples present ferromagnetic-like behaviour at room temperature. We found a clear dependence between saturation magnetization and coercivity with the fraction of Fe2+ and/or the number of Fe near neighbour oxygen vacancies.  相似文献   

6.
《Current Applied Physics》2010,10(5):1360-1365
Titania based ceramics are promising materials for environmental sensors, high efficiency photocatalyst. Ion doping is an effective method to improve the properties by modifying their microstructure and phase composition. In this study, TiO2 particles doped with Fe3+ were prepared by sol-gel method using Ferric nitrate and tetrabutyl titanate as precursors. Fe3+ was incorporated in the TiO2 matrix during thermal treatment in different temperatures. Thermal analysis, TEM and X-ray diffraction were used to characterize the TiO2 powder. Microstructure, phase content, and cell parameters were calculated according to Rietveld refinement software GSAS. The interaction mechanism of Fe3+ in crystal lattice of titanium dioxide and the crystal growth kinetics of Fe3+-doped TiO2 are discussed.  相似文献   

7.
A Fe doped rutile TiO 2 single crystal is grown in an O 2 atmosphere by the floating zone technique.Electron spin resonance (ESR) spectra clearly demonstrate that Fe 3+ ions are substituted for the Ti 4+ ions in the rutile TiO 2 matrix.Magnetization measurements reveal that the Fe:TiO 2 crystal shows paramagnetic behaviour in a temperature range from 5 K to 350 K.The Fe 3+ ions possess weak magnetic anisotropy with an easy axis along the c axis.The annealed Fe:TiO 2 crystal shows spin-glass-like behaviours due to the aggregation of the ferromagnetic clusters.  相似文献   

8.
ABSTRACT

Rb+-doped TiO2 nanoparticles with higher photocatalytic activity were prepared by sol–gel method. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), and surface area (BET) measurements. The photocatalytic activity for the degradation of rhodamine B (RhB) was evaluated. The effects of calcination temperature, Rb+-doping amount, and the dosage of catalyst in the reaction liquid were investigated. The results showed that Rb+ doping can inhibit phase transformation from anatase to rutile, increase surface area of TiO2 crystals, and reduce crystallite size. TiO2 doped with 1% Rb+ and calcined at 650°C shows much higher photoactivity than the others when the doping level of Rb+ and calcination temperature are 0–5% and 350–850°C, respectively. The kinetics of the degradation of RhB was also analyzed. The kinetics of this reaction fits the pseudo first-order kinetics model well, and the reaction rate constants for pure TiO2 and Rb1-650 are 0.086 min?1 and 0.226 min?1 respectively. Doping with Rb+ improves the photocatalytic activity of TiO2 significantly.  相似文献   

9.
Fe3O4 magnetic nanoparticles (Fe3O4 MNPs) with much improved peroxidase-like activity were successfully prepared through an advanced reverse co-precipitation method under the assistance of ultrasound irradiation. The characterizations with XRD, BET and SEM indicated that the ultrasound irradiation in the preparation induced the production of Fe3O4 MNPs possessing smaller particle sizes (16.5 nm), greater BET surface area (82.5 m2 g?1) and much higher dispersibility in water. The particle sizes, BET surface area, chemical composition and then catalytic property of the Fe3O4 MNPs could be tailored by adjusting the initial concentration of ammonia water and the molar ratio of Fe2+/Fe3+ during the preparation process. The H2O2-activating ability of Fe3O4 MNPs was evaluated by using Rhodamine B (RhB) as a model compound of organic pollutants to be degraded. At pH 5.4 and temperature 40 °C, the sonochemically synthesized Fe3O4 MNPs were observed to be able to activate H2O2 and remove ca. 90% of RhB (0.02 mmol L?1) in 60 min with a apparent rate constant of 0.034 min?1 for the RhB degradation, being 12.6 folds of that (0.0027 min?1) over the Fe3O4 MNPs prepared via a conventional reverse co-precipitation method. The mechanisms of the peroxidase-like catalysis with Fe3O4 MNPs were discussed to develop more efficient novel catalysts.  相似文献   

10.
Homonnay  Z.  Nomura  K.  Hamakawa  S.  Hayakawa  T.  Juhász  G.  Kuzmann  E.  Vértes  A. 《Hyperfine Interactions》2002,139(1-4):41-50
The Ni/Ca0.8Sr0.2TiO3 catalyst system prepared by the citrate method shows high activity in partial oxidation of methane to synthesis gas. It is assumed that the interaction of Ni with the perovskite lattice may be responsible for the increased catalytic activity. 1% 57Fe dopant substituted for Ti was used in order to see if the presence of Ni has any perturbation effect on the structure of the perovskite. One may expect systematic changes in the Mössbauer parameters of the substitutional Fe impurity as a function of the NiO content if the bulk properties of the perovskite are affected. Samples with different Ni/Ca0.8Sr0.2Ti0.99 57Fe0.01O3– ratios from 0:1 to 1:1, and others having Fe substitutions for Ti up to 30%, all prepared by the citrate method, have been investigated. The Mössbauer spectra contained doublets of paramagnetic Fe3+ and Fe4+ species as well as paramagnetically relaxed Fe3+. These species were assigned to the bulk perovskite, the perovskite surface and the NiO/perovskite interface. The perturbation of the perovskite structure by Ni could not be verified.  相似文献   

11.
The electronic structure of Mg0.95Mn0.05Fe2−2xTi2xO4 (0x0.8) compound is investigated using near edge X-ray absorption fine structure, (NEXAFS) spectroscopy measurements, carried out at O K, Fe and Ti L3,2-edges at room temperature. The O K-edge spectra indicate that the Fe 3d orbitals have been considerably modified and a new spectral feature start dominating in the pre-edge region at higher Ti doping. The Fe 2p NEXAFS spectra exhibit a mixed valent Fe2+/Fe3+ states apart from the conversion of Fe3+ to Fe2+ with the substitution of Ti ions. The Ti L3,2-edge spectra indicate that Ti ions remain unchanged at 4+ state. These variations in the host electronic structure due to Ti substitution are consistent with the dielectric and transport properties of the material.  相似文献   

12.
Titanium dioxide photocatalysts co-doped with iron (III) and lanthanum were prepared by a facile sol-gel method. The structure of catalysts was characterized by X-ray diffraction (XRD), Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the samples were evaluated by the degradation of methylene blue in aqueous solutions under visible light (λ > 420 nm) and UV light irradiation. Doping with Fe3+ results in a lower anatase to rutile (A-R) phase transformation temperature for TiO2 particles, while doping with La3+ inhibits the A-R phase transformation, and co-doping samples indicate that Fe3+ partly counteracts the effect of La3+ on the A-R transformation property of TiO2. Fe-TiO2 has a long tail extending up the absorption edges to 600 nm, whereas La-TiO2 results in a red shift of the absorption. However, Fe and La have synergistic effect in the absorption of TiO2. Compared with Fe3+ and La3+ singly doped TiO2, the co-doped simple exhibits excellent visible light and UV light activity and the synergistic effect of Fe3+ and La3+ is responsible for improving the photocatalytic activity.  相似文献   

13.
The nano-TiO2 electrode with a p-n homojunction device was designed and fabricated by coating of the Fe3+-doped TiO2 (p-type) film on top of the nano-TiO2 (n-type) film. These films were prepared from synthesized sol-gel TiO2 samples which were verified as anatase with nano-size particles. The semiconductor characteristics of the p-type and n-type films were demonstrated by current-voltage (I-V) measurements. Results show that the rectifying curves of undoped TiO2 and Fe3+-doped TiO2 sample films were observed from the I-V data illustration for both the n-type and p-type films. In addition, the shapes of the rectifying curves were influenced by the fabrication conditions of the sample films, such as the doping concentration of the metal ions, and thermal treatments. Moreover, the p-n homojunction films heating at different temperatures were produced and analyzed by the I-V measurements. From the I-V data analysis, the rectifying current of this p-n junction diode has a 10 mA order higher than the current of the n-type film. The p-n homojunction TiO2 electrode demonstrated greater performance of electronic properties than the n-type TiO2 electrode.  相似文献   

14.
Baotite Ba4{(Ti, Nb, Fe)8[Si4O12O16}Cl is a four-membered ring silicate. Two sets of quadrupole doublets were obtained from the Mössbauer spectrum. The A doublet is caused by Fe3+ in the Ti?O octahedra (I.S.=0.389 mm/s, Q.S.=0.636 mm/s, Γ=0.602 mm/s, A/GSA=0.569), whereas the B doublet reflects Fe2+ in the octahedra (I.S.=1.029 mm/s, Q.S.=2.632 mm/s.). Fe3+/Fe2+=1.32. The spectrum indicates that: (1) both Fe3+ and Fe2+ are present in Baotite; (2) Fe3+ and Fe2+ exist as isomorphs in the Ti?O octahedra.  相似文献   

15.
Sono-enhanced degradation of a dye pollutant Rhodamine B (RhB) was investigated by using H2O2 as a green oxidant and Fe3O4 magnetic nanoparticles (MNPs) as a peroxidase mimetic. It was found that Fe3O4 MNPs could catalyze the break of H2O2 to remove RhB in a wide pH range from 3.0 to 9.0 and its peroxidase-like activity was significantly enhanced by the ultrasound irradiation. At pH 5.0 and temperature 55 °C, the ultrasound-assisted H2O2–Fe3O4 catalysis removed about 95% of RhB (0.02 mmol L−1) in 15 min with a apparent rate constant of 0.15 min−1 for the degradation of RhB, being 6.5 and 37.6 folds of that in the simple catalytic H2O2–Fe3O4 system, and the simple ultrasonic US-H2O2 systems, respectively. The beneficial synergistic behavior between Fe3O4 catalysis and ultrasonic was demonstrated to be dependent on Fe3O4 dosage, H2O2 concentration, pH value and temperature. As a tentative explanation, the observed significant synergistic effects was attributed to the positive interaction between cavitation effect accelerating the catalytic breakdown of H2O2 over Fe3O4 nanoparticles, and the function of Fe3O4 MNPs providing more nucleation sites for the cavitation inception.  相似文献   

16.
Fe-doped TiO2 powder was prepared by high-energy ball milling, using TiO2 Degussa P-25 and α-Fe powders as the starting materials. The structure and magnetic properties of the Fe-doped TiO2 powder were studied by X-ray diffraction, 57Fe Mossbauer spectroscopy and vibrating sample magnetometer. The Reitveld refinement of XRD revealed that ball milling not only triggered incorporation of Fe in TiO2 lattice but also induced the phase transformation from anatase to rutile in TiO2 and consequently the milled Fe-doped TiO2 powder contained only rutile.57Fe Mössbauer effect measure showed that Fe atoms existed in Fe2+ and Fe3+ state, which were assigned to the solid solution FexTi1−xO2. The magnetization measurements indicated that the milled Fe-doped TiO2 powder was ferromagnetic above room temperature. The ferromagnetism in our milled Fe-doped TiO2 powder seemingly does not come from Fe and iron oxides particles/clusters but from the Fe-doped TiO2 powder matrices.  相似文献   

17.
Fe-doped TiO2 samples with different Fe content were prepared by mechanical alloying starting from TiO2 rutile and FeO. The samples were structurally and magnetically characterized by XRD, Mössbauer spectroscopy, X-ray absorption spectroscopy (XAS), AC-susceptibility and magnetization measurements. XAS results showed that Fe ions were incorporated into the rutile phase with oxygen coordination that was lower than that expected in this phase. The oxygen coordination number decreased with the increase of Fe2+ ions such as it was previously found in the milled samples of TiO2 doped with hematite. The RT Mössbauer spectra were reproduced using two paramagnetic interactions, one corresponding to Fe2+ (δ∼0.87 mm/s) and the other to Fe3+ (δ∼0.31 mm/s). Magnetometry measurements showed the presence of paramagnetic and ferromagnetic-like interactions at room temperature. Although saturation and coercivity of the ferromagnetic phase increased with iron, the effective magnetic moment per iron atom decreased, probably due to the precipitation of Fe rich antiferromagnetic structures.  相似文献   

18.
We report on the analysis of morphology and electronic structure of Fe3+-doped Zn–TiO2 nanoparticles. Crystalline nature, phase, and preferred growth direction of the nanoparticles were all determined. Due to size effects and OH–(TiO4) n complexes, variation in the energy gap with metallic and semiconducting characters on the same sample was found. The variation in the energy gap decreased, and the bang gap decayed exponentially with Fe doping and independent of the supporting substrates. Simultaneous effect of the OH ligands on the electronic structure and the formation mechanism of nanorods and nanosheets as manifested by the rutile TiO6 octahedra units edge- and corner-shared bonding was discussed.  相似文献   

19.
Single-phased nanocrystalline particles of pure and 10 % Ti 4+-doped perovskite-related YFeO 3were prepared via mechanosynthesis at 450°C. This temperature is ~150–350 °C lower than those at which the materials, in bulk form, are normally prepared. Rietveld refinements of the X-ray diffraction patterns reveal that the dopant Ti 4+ ions prefer interstitial octahedral sites in the orthorhombic crystal lattice rather than those originally occupied by the expelled Fe 3+ ions. Magnetic measurements show canted antiferromagnetism in both types of nanoparticles. Doping with Ti 4+ lowers the Néel temperature of the YFeO 3 nanoparticles from ~ 586 K to ~ 521 K. The Ti 4+-doped YFeO 3 nanoparticles exhibit enhanced magnetization and coercivity but less magnetic hyperfine fields relative to the un-doped nanoparticles. The 57Fe Mössbauer spectra show ~ 15 % of the YFeO 3 nanoparticles and ~22 of Ti 4+-doped YFeO 3 ones to be superparamagnetic with blocking temperatures < 78 K. The broadened magnetic components in the 57Fe Mössbauer spectra suggest size-dependent hyperfine magnetic fields at the 57Fe nuclear sites and were associated with collective magnetic excitations. The 57Fe Mössbauer spectra show the local environments of the Fe 3+ ions in the superparamagnetic nanoparticles to be more sensitive to the presence of the Ti 4+ ions relative to those in the larger magnetic nanoparticles.  相似文献   

20.
TiO2 nanoparticles modified with MWCNTs and CdS were synthesized by the sol–gel method followed by solvothermal treatment at low temperature. The chemical composition and surface structure of the CdS/CNT–TiO2 composites were investigated by X-ray diffraction, specific surface area measurements, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. Then a series of sonocatalytic degradation experiments were carried out under ultrasonic irradiation in the presence of CNT/TiO2 and the CdS/CNT–TiO2 composites. It was found that RhB was quickly and effectively degraded under different ultrasonic conditions. As expected, the nanosized CdS/CNT–TiO2 photocatalyst showed enhanced activity compared with the non CdS treated CNT/TiO2 material in the sonocatalytic degradation of RhB. The sonocatalyst CCTb with 34.68% contents of Ti heat treated at 500 °C for 1 h showed the highest sonocatalytic activity. The synergistic effect of the greater surface area and catalytic activities of the composite catalysts was examined in terms of their strong adsorption ability and interphase interaction by comparing the effects of different amounts of MWCNTs and CdS in the catalysts and their roles. The mechanism of sonocatalytic degradation over the CdS/CNT modified TiO2 composites under different ultrasonic conditions was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号