首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Current Applied Physics》2020,20(8):988-993
Intercalation of Li+, Na+, K+, Mg2+, Ca2+, Zn2+, and Al3+ ions into B-, N-, Al-, and P-doped graphite has been studied using density functional theory calculations. While the intercalation of Li+, K+, and Ca2+ ions into graphite is thermodynamically favorable, that of Na+, Mg2+, Zn2+, and Al3+ ions into graphite is unfavorable. When doped in the form of graphitic structure, B, Al, and P dopants significantly stabilize the ion-intercalated graphite compounds. As a result, Na+ ions that are unable to intercalate into graphite can intercalate into B-, Al-, and P-doped graphite. The electron transfer from B, Al, and P dopants to host C atoms reinforces the ion–graphene electrostatic interaction, enhancing the thermodynamic driving force for ion intercalation. The catalytic activity of the dopant to promote the ion intercalation increases in the order of N < B < P < Al, which is associated with the electronegativity of the dopant.  相似文献   

2.
Na self-diffusion, Li self-diffusion, Na+–Li+ ion exchange, electrical conductivity, and mechanical relaxation have been studied below Tg on glasses of the system ZrF4–BaF2–LaF3–AF (A=Na, Li), with A=10, 20, 30 mol%. Compared to the transport mechanism in alkali-containing silicate glasses, the mechanisms in these non-oxide glasses are anomalous. Thus the self-diffusion coefficient of Na decreases with increasing NaF content, whereas that of Li increases with increasing LiF content. Both the electrical conductivity and the Na+–Li+ ion exchange reach a minimum at ≈ 20 mol% LiF, and the mechanical relaxation shows one peak for the 20 and 30 mol% LiF-glasses and two peaks for the glass with 10 mol% LiF, evidencing both a contribution of F and Li+ ions to the transport. Moreover, the presence of the three partially interacting mobile species F, Na+, Li+ obviously leads to an anionic–cationic mixed ion effect. Applying the Nernst–Einstein equation to the Li+ transport in LiF-containing glasses shows that its mechanism is dissimilar to that in oxide glasses. Calculated short jump distances possibly can be interpreted as an Li+ movement via energetically suitable sites near F ions. Likewise the Nernst–Planck model, successfully applied to the ionic transport in mixed alkali silicate glasses, obviously does also not hold for the present heavy metal fluoride glasses.  相似文献   

3.
《Current Applied Physics》2010,10(4):1196-1202
New lead-free ceramics (Bi0.92Na0.92−xLix)0.5Ba0.06Sr0.02TiO3 have been fabricated by a conventional ceramic technique and their electrical properties have been studied. X-ray diffraction studies reveal that Li+, Ba2+ and Sr2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure. The partial substitution of Li+ for Na+ increases the remanent polarization Pr of the ceramics. Because of the large Pr and low coercive field Ec, the ceramics with x = 0.075–0.125 exhibit excellent piezoelectric properties: d33 = 189–235 pC/N, kp = 33.6–36.3% and kt = 51.6–54.3%. The ceramics exhibit relaxor behaviors after the substitution of Li+ for Na+. Our results also suggest that polar and non-polar phases may coexist in the ceramics at temperatures above the depolarization temperature Td.  相似文献   

4.
Density functional theory investigations show that the Li+ ion is stabilized at the center of hexagonal carbon ring with the distance of 1.84 Å from graphene surface. The potential barrier of Li+ ion diffusion on the graphene surface, about 0.32 eV, is much lower than that of Li+ ion penetrating the carbon ring which is 10.68 eV. When a vacancy of graphene exists, potential barrier about 10.25 eV for Li+ ion penetrating the defect is still high, and the ability of the vacancy to sizing the Li+ ion is also observed. Electronic densities of states show that the formation of a localized bond between Li atom and edge carbon of vacancy is the main reason for high potential barrier when Li+ ion penetrate a vacancy. While Coulomb repulsion is the control factor for high potential barrier in case of Li+ ion penetrating a carbon ring.  相似文献   

5.
Adsorption of two anions (F and Cl) and two cations (Li+ and Na+) on the surface of aluminum nitride nanotubes (AlNNTs) is investigated by density functional theory. The reactions are site-selective, so that the cations and anions prefer to be adsorbed atop the N and Al atoms of the tube surface, respectively. The adsorption energies of anions (−4.46 eV for F and −1.12 eV for Cl) are much higher than those of cations (about −0.17 eV for Li+ and −0.12 eV for Na+) which can be explained using frontier molecular orbital theory. It was found that the adsorption of anions may facilitate the electron emission from the AlNNT surface by reducing the work function due to the charge transfer occurs from the anions to the tube. It has been predicted that in contrast to the cations the adsorption of anions also obviously increases the electrical conductivity of AlNNT.  相似文献   

6.
Cu–Fe–CNTs and Ni–Fe–CNTs coatings were deposited on gray cast iron by a hydrothermal approach. It was demonstrated that, the flaky graphite of gray cast iron was exfoliated to graphene nanosheets under hydrothermal reactions, and graphene nanosheets were scrolled to CNTs. After high temperature treatments, the volume losses of Cu–Fe–CNTs and Ni–Fe–CNTs coatings were 52.6 % and 40.0 % of gray cast iron substrate at 60 min wear tests, respectively, obviously increasing the wear properties of gray cast iron. During hydrothermal reactions, water jets and shock waves were produced by bubble collapse. Induced by the water jets and shock waves, exfoliation of flaky graphite was performed, producing exfoliated graphene nanosheets. Attacked by the radially distributed water jets and shock waves, graphene nanosheets were curved, shaped to semicircle morphology and eventually scrolled to tubular CNTs.  相似文献   

7.
In this study, a symmetric electrochemical capacitor was fabricated by adopting a lithium iron phosphate (LiFePO4)-activated carbon (AC) composite as the core electrode material in 1.0 M Na2SO3 and 1.0 M Li2SO4 aqueous electrolyte solutions. The composite electrodes were prepared via a facile mechanical mixing process. The structural properties of the nanocomposite electrodes were characterised by scanning electron microscopy (SEM) and Brunauer–Emmett–Teller (BET) analysis. The electrochemical performances of the prepared composite electrode were studied using cyclic voltammetry (CV), galvanostatic charge–discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that a maximum specific capacitance of 112.41 F/g was obtained a 40 wt% LiFePO4 loading on an AC electrode compared with that of a pure AC electrode (76.24 F/g) in 1 M Na2SO3. The improvement in the capacitive performance of the 40 wt% LiFePO4–AC composite electrode is believed to be attributed to the contribution of the synergistic effect of the electric double layer capacitance (EDLC) of the AC electrode and pseudocapacitance via the intercalation/extraction of H+, OH, Na+ and SO32− and Li+ ions in LiFePO4 lattices. In contrast, it appears that the incorporation of LiFePO4 into AC electrodes does not increase the charge storage capability when Li2SO4 is used as the electrolyte. This behaviour can be explained by the fact that the electrolyte system containing SO42− only exhibits EDLC in the Fe-based electrodes. Additionally, Li+ ions that have lower conductivity and mobility may lead to poorer charge storage capability compared to Na+ ions. Overall, the results reveal that the AC composite electrodes with 40 wt% LiFePO4 loading on a Na2SO3 neutral electrolyte exhibit high cycling stability and reversibility and thus display great potential for electrochemical capacitor applications.  相似文献   

8.
The graphene-based materials along with the adsorption of alkali metal ions are suitable for energy conversion and storage applications. Hence in the present work, we have investigated the structural and electronic properties of pristine and defected graphene sheet upon the adsorption of alkali metal ions (Li+, Na+, and K+) using density functional theory (DFT) calculations. The presence of vacancies or vacancy defects enhances the adsorption of alkali ions than the pristine sheet. From the obtained results, it is found that the adsorption energy of Li+ on the vacancies defected graphene sheet is higher (3.05?eV) than the pristine (2.41?eV) and Stone–Wales (2.50?eV) defected sheets. Moreover, the pore radius of the pristine and defected graphene sheets are less affected by metal ions adsorption. The increase in energy gap upon the adsorption of metal ions is found to be high in the vacancy defected graphene than that of other sheets. The metal ions adsorption in the defective vacancy sheets has high charge transfer from metal ions to the graphene sheet. The bonding characteristic between the metal ions and graphene sheet are analysed using QTAIM analysis. The influence of alkali ions on the electronic properties of the graphene sheet is examined from the Total Density of States (TDOS) and Partial Density of States (PDOS).  相似文献   

9.
Two-dimensional (2D) metal–organic framework (MOF) nanosheets have recently received extensive attention due to their ultra-thin thickness, large specific surface area, chemical and functional designability. In this study, an unconventional method using surface acoustic wave (SAW) technology is proposed to exfoliate large quantities and uniform layers of 2D MOF-Zn2(bim)4 nanosheets in a microfluidic system. We successfully demonstrated that the thickness of 2D MOF is effectively and accurately controlled by optimizing the SAW parameters. The mechanisms for the efficient exfoliation of 2D MOF nanosheets is attributed to both the electric and acoustic fields generated by the SAWs in the liquid. The electric field ionizes the methanol to produce H+ ions, which intercalate Zn2(bim)4 sheets and weaken the interlayer bonding, and the strong shear force generated by SAWs separates the MOF sheets. A yield of 66% for monolayer MOFs with a maximum size of 3.5 μm is achieved under the combined effect of electric and acoustic fields. This fast, low-energy exfoliation platform has the potential to provide a simple and scalable microfluidic exfoliation method for production of large-area and quantities of 2D MOFs.  相似文献   

10.
Yb3+ and M+ monovalent alkali ions (M+ = Li+, Na+, K+)-co-doped CaF2 cubic laser crystals were grown by the micro-pulling-down method (μ-PD) under CF4 atmosphere. Structural and spectroscopic characterizations of Yb3+ in substitution of Ca2+ (absorption, emission and decay curves) were carried out to study the effect of M+ ions as charge compensators.  相似文献   

11.
Eu3+ and Sm3+ activated M2SiO4 (M=Ba, Sr and Ca) red-emitting phosphors were synthesized by a solid state reaction. The results of XRD and SEM measurements show that the samples are single phase and have irregular shape. The excitation and emission spectra indicate that these phosphors were effectively excited by ultraviolet (395 nm) and blue (466 nm) light and exhibited red performance. The charge compensator R+ (R+=Li+, Na+ and K+) injecting into the host efficiently enhanced the luminescence intensity of the M2SiO4: Eu3+ and M2SiO4: Sm3+ phosphors. The emission intensity of M2SiO4: Eu3+ and Sm3+ doping Li+ were higher than that of Na+ or K+.  相似文献   

12.
13.
《Solid State Ionics》2006,177(26-32):2601-2603
New Li+ ion-conductive glasses Li2S–B2S3–Li4SiO4 were synthesized by rapid quenching, and they were transformed into glass ceramics by heat treatment. The heat treatment increased the ionic conductivities of the Li4SiO4-doped glasses, and the highest ionic conductivity observed in the system was 1.0 × 10 3 S cm 1 at room temperature. The glass ceramics were highly stable against electrochemical oxidation with a wide electrochemical window of 10 V.  相似文献   

14.

Abstract  

Lithium-7 nuclear magnetic resonance (NMR) measurements were used to investigate the stoichiometry and stability of Li+ complexes with 15-crown-5 (15C5), benzo-15-crown-5 (B15C5) and dibenzo-15-crown-5 (DB15C5) in a number of nitromethane (NM)–acetonitrile (AN) binary mixtures. In all cases, the exchange between the free and complexed lithium ion was fast on the NMR time scale and a single population average resonance was observed. While all crown ethers form 1:1 complexes with Li+ ion in the binary mixtures used, stepwise formation constants of the 1:1 (ligand/metal) complexes were evaluated from computer fitting of the NMR-mole ratio data to equations which relate the observed metal ion chemical shifts to formation constants. There is an inverse linear relationship between the logarithms of the stability constants and the mole fraction of AN in the solvent mixtures. The stability order of the 1:1 complexes was observed to be 15C5.Li+ > B15C5.Li+ > DB15C5.Li+. The optimized structures of the free ligands and their 1:1 complexes with the Li+ ion were predicted by ab initio theoretical calculations using the Gaussian 98 software. The results of calculations are discussed.  相似文献   

15.
The Li+- and Na+-doped hexacelsians (HC) synthesized from Ba-LTA synthetic zeolite as precursors were used for preparation of monoclinic celsians (MC). The doped pure MC and mixture HC/MC species were obtained by thermally induced polymorphous transformation at 1200 °C. Synthesized-doped MC have been characterized by X-ray powder diffraction and spectroscopic (infrared, Raman and 29Si magic angle spinning nuclear magnetic resonance) methods. The obtained results suggest that in all investigated samples Na+ or Li+ dopants were incorporated in MC crystal structures during thermal transformation of a zeolite. It has been shown that HC→MC transformation depends on molar fractions of alkali cations. These findings combined with used temperature/time conditions could help in optimization of MC synthesis route.  相似文献   

16.
The binding energy and the spatial distribution of an acceptor in an ionic semiconductor are calculated on the Anderson model with three parameters. The result is applied to the case of Li+, Na+, Cu+ and Ag+ in II–VI semiconductors. The parameters are evaluated by the dielectric theory of a chemical bond. It is shown that Li+ in ZnO, CdS, and CdSe forms an acceptor state with a larger amplitude at nearest-neighbor anion sites than at an impurity site; while Cu+ and Ag+ in Zn and Cd compounds have the opposite properties. The Na+ ion forms an acceptor state more localized densely at the impurity site in Zn compounds and vice versa in Cd compounds.  相似文献   

17.
The ultrasonic process has been examined to exfoliate layered materials and upgrade their properties for a variety of applications in different media. Our previous studies have shown that the ultra-sonication treatment in water without chemicals has a positive influence on the physical and electrochemical performance of layered materials and nanoparticles. In this work, we have probed the impact of ultrasonication on the physical properties and the oxygen evolution reaction (OER) of the NiFe LDH materials under various conditions, including suspension concentration (2.5–12.5 mg mL−1), sonication times (3–20 min) and amplitudes (50–90%) in water, in particular, sonication times and amplitudes. We found that the concentration, amplitude and time play significant roles on the exfoliation of the NiFe LDH material. Firstly, the NiFe LDH nanosheets displayed the best OER performance under ultrasonic conditions with the concentration of 10 mg mL−1 (50% amplitude and 15 min). Secondly, it was revealed that the exfoliation of the NiFe LDH nanosheets in a short time (<10 min) or a higher amplitudes (≥80%) has left a cutdown on the OER activity. Comprehensively, the optimum OER activity was displayed on the exfoliated NiFe LDH materials under ultrasonic condition of 60% (amplitude), 10 mg mL−1 and 15 min. It demanded only 250 mV overpotentials to reach 10 mA cm−2 in 1 M KOH, which was 100 mV less than the starting NiFe LDH material. It was revealed from the mechanism of sonochemistry and the OER reaction that, after exfoliation, the promoted OER performance is ascribed to the enriched Fe3+ at the active sites, easier oxidation of Ni2+ to Ni3+, and the strong electrical coupling of the Ni2+ and Fe3+ during the OER process. This work provides a green strategy to improve the intrinsic activity of layered materials.  相似文献   

18.

Background

The plasma membrane Na+/Ca2+-exchanger (NCX) has recently been shown to regulate Ca2+-dependent N-methyl-d-aspartate receptor (NMDAR) desensitization, suggesting a tight interaction of NCXs and NMDARs in lipid nanoclasters or “rafts”. To evaluate possible role of this interaction we studied effects of Li+ on NMDA-elicited whole-cell currents and Ca2+ responses of rat cortical neurons in vitro before and after cholesterol extraction by methyl-β-cyclodextrin (MβCD).

Results

Substitution Li+ for Na+ in the external solution caused a concentration-dependent decrease of steady-state NMDAR currents from 440?±?71 pA to 111?±?29 pA in 140 mM Na+ and 140 mM Li+, respectively. The Li+ inhibition of NMDAR currents disappeared in the absence of Ca2+ in the external solution (Ca2+-free), suggesting that Li+ enhanced Ca2+-dependent NMDAR desensitization. Whereas the cholesterol extraction with MβCD induced a decrease of NMDAR currents to 136?±?32 pA in 140 mM Na+ and 46?±?15 pA in 140 mM Li+, the IC50 values for the Li+ inhibition were similar (about 44 mM Li+) before and after this procedure. In the Ca2+-free Na+ solution the steady-state NMDAR currents after the cholesterol extraction were 47?±?6% of control values. Apparently this amplitude decrease was not Ca2+-dependent. In the Na+ solution containing 1 mM Ca2+ the Ca2+-dependent NMDAR desensitization was greater when cholesterol was extracted. Obviously, this procedure promoted its development. In agreement, Li+ and KB-R7943, an inhibitor of NCX, both considerably reduced NMDA-activated Ca2+ responses. The cholesterol extraction itself caused a decrease of NMDA-activated Ca2+ responses and, in addition, abolished the effects of Li+ and KB-R7943. The cholesterol loading into the plasma membrane caused a recovery of the KB-R7943 effects.

Conclusions

Taken together our data suggest that NCXs downregulate the Ca2+-dependent NMDAR desensitization. Most likely, this is determined by a tight functional interaction of NCX and NMDAR molecules because of their co-localization in membrane lipid rafts. The destruction of these rafts is accompanied by an enhancement of NMDAR desensitization and a loss of NCX-selective agent effects on NMDARs.
  相似文献   

19.
We reported the role of A-site modification on the structural, ferroelectric, optical and electrical field-induced strain properties of Bi0.5(Na0.78K0.22)0.5Ti0.97Zr0.03O3 lead-free piezoceramics. The Li+ ions with concentration from 0 to 5 mol% were used to substitute at A-site. There was no phase transition when Li+ ions was added up to 5 mol%. The electric field-induced strain (Smax/Emax) values increased from 600 to 643 pm/V for 2 mol% Li+-added which results from distortion both rhombohedral and tetragonal phase structures. The band gap reduced from 2.88 to 2.68 eV and the saturation polarization decreased from 46.2 to 26.1 μC/cm2 when Li+ ions concentration increased from 0 to 5 mol% respectively. We expect that this work could be helpful for further understanding the role of A-site dopants in comparison with B-site modification in lead-free Bi0.5(Na,K)0.5TiO3-based ceramics.  相似文献   

20.
The effects of selected metal ions on the gas‐phase acidity of weak organic acids have been explored using the DFT and Moller–Plesset Perturbation Theory (MP2) calculations. The three organic acids selected for this study were acetic acid (aliphatic), benzoic acid (aromatic), and glycine (amino acid). The acidities of these compounds are compared with the acidity of their Li+‐, Na+‐, and K+‐complexed species. The results indicate that upon complexation with Li+, Na+, and K+ at 298 K, the gas‐phase acidity of acetic acid, for example, varies from 345.3 to 218.8, 230.2, and 240.1 kcal/mol, respectively (i.e., its dissociation becomes much less endothermic). These values indicate that a weak organic acid can be converted to a super acid when it is complexed with an ionic metal. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号