首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 356 毫秒
1.
Current work presents a facile, cost-effective, and green method to synthesize copper selenide nanostructures and copper selenide/graphene nanocomposites. The products were synthesized by a co-precipitation method by glycine amino acid as a green surfactant and graphene oxide (GO) sheets as a graphene source. X-ray diffraction patterns (XRD) of the products indicated that the products were Cu2Se3 with tetragonal phase. Fourier transform infrared (FTIR) spectroscopy and the XRD patterns indicated that the GO sheets were changed into reduced GO (rGO) during the synthesis process. Scanning and transmission electron microscopy (SEM and TEM) images showed the nanoparticles (NPs) that were decorated on rGO sheets had the significantly smaller size in compared to the pristine NPs. UV-vis results revealed that, the absorption peak of the products were in the visible region with a band-gap value between 1.85 eV and 1.95 eV. Finally, the products were applied as photocatalytic materials to remove Methylene Blue (MB) dye under solar-light and visible-light irradiation conditions. It was observed; the rGO had a significant role in enhancing the photocatalytic performance of the products and Cu2Se3/rGO (15%) could degrade more than 91% and 73% of MB only during 1 h under solar-light and visible-light sources, respectively.  相似文献   

2.
In this figure , two allotropes of graphene, graphene oxide and reduced graphene oxide, were synthesized by the modified Hummers' method. Facile synthesis of Sm2O3/GO and Sm2O3/rGO nanocomposites was carried out via the sol-gel followed by reflux method. Photocatalysis activities got enhanced in Sm2O3/rGO as compared to Sm2O3/GO nanocomposite and zones of inhibition of antibacterial activities of Sm2O3/rGO were found more as compared Sm2O3/GO nanocomposite. More details about this figure will be discussed by Prof. Muhammad Akhyar Farrukh and his co-workers on page 32–45 in this issue.

  相似文献   


3.
Magnetite zinc oxide (MZ) (Fe3O4/ZnO) with different ratios of reduced graphene oxide (rGO) was synthesized using the solid-state method. The structural and optical properties of the nanocomposites were analyzed using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis/DRS), and photoluminescence (PL) spectrophotometry. In particular, the analyses show higher photocatalytic movement for crystalline nanocomposite (MZG) than MZ and ZnO nanoparticles. The photocatalytic degradation of methylene blue (MB) with crystalline ZnO for 1.5 h under visible light was 12%. By contrast, the photocatalytic activity for MZG was more than 98.5%. The superior photocatalytic activity of the crystalline nanocomposite was detected to be due to the synergistic effect between magnetite and zinc oxide in the presence of reduced graphene oxide. Moreover, the fabricated nanocomposite had high electron–hole stability. The crystalline nanocomposite was stable when the material was used several times.  相似文献   

4.
《中国化学快报》2020,31(8):2067-2070
Metal oxide semiconductors (MOS)-reduced graphene oxide (rGO) nanocomposites have attracted great attention for room-temperature gas sensing applications. The development of novel sensing materials is the key issue for the effective detection of ammoniagas at room temperature. In the present work, the novel reduced graphene oxide (rGO)-In2O3 nanocubes hybrid materials have been prepared via a simple electrostatic self-assembly strategy. Characterization results exhibit that the intimate interfacial contact between In2O3 nanocubes and the rGO sheets are achieved. Particularly, the as-prepared rGO/In2O3 nanocomposites displayed high sensitivity, fast response and excellent selectivity towards ammonia (NH3) at room-temperature, which clearly uncovers the merit of structural design and rational integration with rGO sheets. The superior gas sensing performance of the rGO/In2O3 nanocomposites can be attributed to the synergetic effects of rGO sheets and porous In2O3 nanocubes. The reported synthesis offers a general approach to rGO/MOS-based semiconductor composites for room-temperature gas sensing applications.  相似文献   

5.
NiS (nickel sulfide)–In2O3 (indium oxide) nanostructures and NiS–In2O3 decorated on graphene oxide (GO) were demonstrated by ultrasonic/hydrothermal method. The structural study demonstrates the preparation of bixbyite and hexagonal phase of In2O3 and NiS for all of the synthesized catalysts. The band gap of the synthesized catalyst was determined to be in the range of 2.30–3.00 eV. A morphological evaluation by field emission scanning electron microscopy of NiS–In2O3 decorated on graphene oxide shows support for the NiS–In2O3 on the graphene oxide layer. Different test parameters were performed to study the phase and morphology. The particle sizes of the In2O3, NiS–In2O3 and NiS–In2O3/GO nanocomposites were 56.0, 62.0 and 66.0 nm, respectively. The photocatalytic performance of NiS–In2O3/GO nanocomposites was examined for the degradation of methylene blue dye under a UV lamp. The prepared sample shows 98.25% photocatalytic degradation within 40 min and at pH 9. With the presence the NiS and GO, the photo-degradation capacities of In2O3 and NiS–In2O3 are improved owing to the low band gap being calculated in UV–vis DRS analysis. The high ratio of NiS causes the highest photocatalytic properties of NiS–In2O3 nanocomposites owing to the enhancement of charge separation efficiency and generation of hydroxyl radicals. This study presents a facile and low-cost method to prepare highly active NiS–In2O3/GO nanocomposites. The antibacterial data indicate the significant properties of NiS–In2O3/GO nanocomposites for this study.  相似文献   

6.
In this paper, ternary nanocomposites of Fe3O4/reduced graphene oxide/polyvinyl pyrrolidone (Fe3O4/rGO/PVP) as a novel type of electromagnetic microwave absorbing materials were synthesized by a three-step chemical approach. First, Fe3O4 nanospheres were made by solvent thermal method. Successively, the Fe3O4 particles were assembled with rGO after having activated by para-aminobenzoic acid. PVP grafting and reduction of GO happened simultaneously in the third step. It is found that the electromagnetic absorption (EA) performance of synthesized ternary composites with suitable PVP amount had been significantly enhanced comparing to Fe3O4 and Fe3O4/rGO. Merely 15?wt% low loading in paraffin and thin as 2.8?mm can reach effective EA bandwidth (below ?10 Db) of 11.2?GHz, and the highest reflection loss reached ?67?dB at 10.7?GHz. It was demonstrated that these composites show an effective route to novel microwave absorbing material design.  相似文献   

7.
Herein, we present an electrochemically assisted method for the reduction of graphene oxide (GO) and the assembly of polyoxometalate clusters on the reduced GO (rGO) nanosheets for the preparation of nanocomposites. In this method, the Keggin‐type H4SiW12O40 (SiW12) is used as an electrocatalyst. During the reduction process, SiW12 transfers the electrons from the electrode to GO, leading to a deep reduction of GO in which the content of oxygen‐containing groups is decreased to around 5 %. Meanwhile, the strong adsorption effect between the SiW12 clusters and rGO nanosheets induces the spontaneous assembly of SiW12 on rGO in a uniformly dispersed state, forming a porous, powder‐type nanocomposite. More importantly, the nanocomposite shows an enhanced capacity of 275 mAh g?1 as a cathode active material for lithium storage, which is 1.7 times that of the pure SiW12. This enhancement is attributed to the synergistic effect of the conductive rGO support and the well‐dispersed state of the SiW12 clusters, which facilitate the electron transfer and lithium‐ion diffusion, respectively. Considering the facile, mild, and environmentally benign features of this method, it is reasonable as a general route for the incorporation of more types of functional polyoxometalates onto graphene matrices; this may allow the creation of nanocomposites for versatile applications, for example, in the fields of catalysis, electronics, and energy storage.  相似文献   

8.
The nanocomposites of titania coupled with graphene oxide (GO) and reduced graphene oxide (rGO), respectively, were prepared by homogeneous hydrolysis with urea. Graphene was obtained by effect of high‐intensity cavitation field on natural graphite in the presence of strong aprotic solvents in pressurized ultrasonic reactor. The morphology of TiO2–GO and TiO2–rGO composites was assessed by scanning electron microscopy and atomic force microscopy. The nitrogen adsorption–desorption was used for determination of surface area (BET) and porosity. Raman and IR spectroscopy were used for qualitative analysis and diffuse reflectance spectroscopy was employed to estimate band‐gap energies. Further enhancement of the photocatalytic activity was attained by codoping of composites with noble metals—Au, Pd and Pt. The photocatalytic activity of TiO2–GO and TiO2–rGO were assessed by photocatalytic decomposition of Orange II dye in an aqueous slurry under UV and visible light irradiation. The photocatalytic activity of noble metals codoped samples was determined with decomposition of Reactive Black 5 azo dye.  相似文献   

9.
Polymer brushes decorated reduced GO (rGO) with advanced applications have been prepared by bioinspired polydopamine (PDA) chemistry integrated with activators regenerated by electron transfer atom transfer radical polymerization (ARGET‐ATRP) technique. First, rGO/PDA was obtained by the process for graphene oxide (GO) coated with a homogeneous bio‐adhesive PDA layer. Then the initiator 2‐bromoisobutyryl bromide (BIBB) was immobilized on the surface of PDA functionalized rGO. Finally, rGO/PDA‐Br was polymerized with N, N‐diethylaminoethyl methacrylate (DEAEMA) and glycidyl methacrylate (GMA) to obtain rGO/PDA‐g‐polymer brushes by ARGET‐ATRP process. The prepared rGO/PDA‐g‐PGMA brush would be subjected to further functionalization with ethylenediamine (EDA), which would impart the obtained products (rGO/PDA‐g‐PGMA‐NH2) with good adsorption ability toward cationic dyes. The chemical structures and morphologies of the functionalized GO products have been characterized in detail by Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), Raman spectroscopy, thermal gravimetric analysis (TGA), scanning electron microscope (SEM), transmission electron microscope(TEM), and atomic force microscopy (AFM). The distinctive pH‐responsive character of rGO/PDA‐g‐PDEAEMA and adsorption ability of rGO/PDA‐g‐PGMA‐NH2 for cationic dyes have been explored by UV–vis spectrophotometer. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 689–698  相似文献   

10.
Graphene‐polymer nanocomposites have significant potential in many applications such as photovoltaic devices, fuel cells, and sensors. Functionalization of graphene is an essential step in the synthesis of uniformly distributed graphene‐polymer nanocomposites, but often results in structural defects in the graphitic sp2 carbon framework. To address this issue, we synthesized graphene oxide (GO) by oxidative exfoliation of graphite and then reduced it into graphene via self‐polymerization of dopamine (DA). The simultaneous reduction of GO into graphene, and polymerization and coating of polydopamine (PDA) on the reduced graphene oxide (RGO) surface were confirmed with XRD, UV–Vis, XPS, Raman, TGA, and FTIR. The degree of reduction of GO increased with increasing DA/GO ratio from 1/4 to 4/1 and/or with increasing temperature from room temperature to 60 °C. A RAFT agent, 2‐(dodecylthiocarbonothioylthio)?2‐methylpropionic acid, was linked onto the surface of the PDA/RGO, with a higher equivalence of RAFT agent in the reaction leading to a higher concentration of RAFT sites on the surface. Graphene‐poly(methyl methacrylate), graphene‐poly(tert‐butyl acrylate), and graphene‐poly(N‐isopropylacrylamide) nanocomposites were synthesized via RAFT polymerization, showing their characteristic solubility in several different solvents. This novel synthetic route was found facile and can be readily used for the rational design of graphene‐polymer nanocomposites, promoting their applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3941–3949  相似文献   

11.
Smart polymers are advanced materials that continue to attract scientific community. In this work, self‐healing waterborne polyurethane/reduced graphene oxide (SHWPU/rGO) nanocomposites were prepared by in situ chemical reduction of graphene oxide in a waterborne polyurethane matrix. The chemical structure, morphology, thermal stability, mechanical property, and electrical conductivity of the SHWPU/rGO nanocomposites were characterized. The prepared SHWPU/rGO nanocomposites were further treated under heating, microwave radiating, and electrifying conditions to investigate their healing property. The results showed that chemical reduction of graphene oxide was achieved using hydrazine hydrate as a reducing agent and the rGO was well dispersed in the SHWPU matrix. The thermal stability and mechanical properties of SHWPU/rGO nanocomposites were significantly increased. The SHWPU/rGO nanocomposites can be healed via different methods including heating, microwave radiating, and electrifying. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 202–209  相似文献   

12.
Graphene oxide ‐ Fe3O4 ‐ NH3+H2PW12O40 magnetic nanocomposite (GO/Fe3O4/HPW) was prepared by linking amino ‐ functionalized Fe3O4 nanoparticles (Fe3O4 ‐ NH2) on the graphene oxide (GO), and then grafting 12 ‐ tungstophosphoric acid (H3PW12O40) on the graphene oxide ‐ magnetite hybrid (GO ‐ Fe3O4 ‐ NH2). The obtained GO/Fe3O4/HPW nanocomposite was well characterized with different techniques such as FT ‐ IR, TEM, SEM, XRD, EDX, TGA ‐ DTA, AGFM, ICP and BET measurements. The used techniques showed that the graphene oxide layers were well prepared and the various stages of preparation of the GO/Fe3O4/HPW nanocomposites successfully completed. This new nanocomposite displayed excellent performance as a heterogeneous catalyst in the oxidation of alcohols with H2O2. The as ‐ prepared GO/Fe3O4/HPW catalyst was more stable and recyclable at least five times without significantly reducing its catalytic activity.  相似文献   

13.
Polymeric materials have been found to be ideal candidates for the synthesis of organic–inorganic nanomaterials. We have obtained Co3O4‐decorated graphene oxide (GO) nanocomposites by a simple polymer combustion method. Polyvinyl alcohol (PVA) of two different molecular weights, 14,000 and 125,000, was used for the synthesis. The pristine sample was annealed at 300, 500, and 800°C. PVA has played an important role in the formation of GO and Co3O4 nanoparticles. Synthesized Co3O4–GO nanocomposites were characterized by X‐ray diffraction, Fourier transform infrared, Raman, electron paramagnetic resonance, transmission electron microscopy, and vibrating sample magnetometry. Reflection peaks at 12° and 37° in an X‐ray study confirm the formation of Co3O4–GO. Raman study validates the presence of GO in nanocomposites of Co3O4–GO. Room temperature ferromagnetism was observed in all annealed samples. The highest coercivity of 462 G was observed for 300°C annealed samples as compared with bulk Co3O4. On the basis of the results obtained, a mechanism of formation is proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The necessity of drying the graphene oxide suspension (GOsus) using Hummer's Method to produce graphene oxide (GO) powder was studied. The undried GOsus was compared to the dried GO. The GO materials were used as Pt supports via NaBH4 reduction for O2 reduction. XRD patterns showed similar d-spacing in both while the half-cell tests of the Pt/rGOsus and Pt/rGO catalysts were similar. GOsus film, deposited onto Toray Carbon Paper and electrochemically reduced in aq. H2SO4 was tested as a capacitor. The suspension and dried graphene-based capacitor showed similar XRD and XPS patterns and the erGOsus capacitor displayed increased capacitance.  相似文献   

15.
Commercialization of Li–S in present scenario is obstructed by poor performance of cathode and its compatibility with electrolyte used. Here in this work, in order to improve the electrochemical performance all solid state Li–S battery, solid electrolyte (SE) formed by composition of lithium sulfide (Li2S) and phosphorus pentasulfide (P2S5) combinedly called LPS is used. The modified carbon in the form of graphene oxide (GO) and reduced graphene oxide (rGO) as additive is used to provide better electron conduction pathway. High conductivity of the order 10−4 S cm−1 of prepared LPS overcomes the major drawback of insulating nature of sulfur. The coin cells are fabricated by using above mentioned material as a cathode material, LPS as SE, and lithium foil as anode. The prepared nanocomposites are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) to study structural and morphological properties. Energy dispersive X-ray spectroscopy (EDS) images of the cathode surface confirms the uniform spreading of material. The electrochemical performance of coin cell is studied by Galvanostatic charge-discharge plot at 0.1 C to check the compatibility of composite and electrolyte prepared. The cells having additive material GO and rGO with host sulfur show better results as compared to the cell having pristine sulfur.  相似文献   

16.
Polymer-coated magnetic nanoparticles are emerging as a useful tool for a variety of applications, including catalysis. In the present study, fucoidan-coated magnetic graphene oxide was synthesized using a natural sulfated polysaccharide. The prepared BaFe12O19@GO@Fu (Fu=fucoidan, GO=graphene oxide) was characterized using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) analysis, vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), Raman spectroscopy, and X-ray diffraction (XRD). The catalytic proficiency of BaFe12O19@GO@Fu was investigated in the synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives. Excellent turnover numbers (TON) and turnover frequencies (TOF) (6330 and 25320 h−1) testify to the high efficiency of the catalyst. Moreover, the antimicrobial activity of BaFe12O19@GO@Fu was evaluated against Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus) through the Agar well diffusion method, indicating that BaFe12O19@GO@Fu has antibacterial activity against S. aureus.  相似文献   

17.

A facile procedure, involving one-pot synthesis of CeVO4/BiVO4 and in-situ reduction of graphene oxide (GO), has been used to prepare CeVO4/BiVO4/rGO nanocomposites. Different ratios of the CeVO4–BiVO4 were prepared to afford composites represented as CBVG3, CBVG5, and CBVG7. The ternary nanocomposite materials were characterized by using powder X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), photoluminescence and UV–vis spectroscopic techniques. Photocatalytic efficiency of the as-prepared ternary nanocomposites was investigated through the photo degradation of methyl orange under a visible light irradiation at 470 nm. The photocatalytic performance was enhanced by loading the CeVO4/BiVO4 nanoparticles on reduced graphene oxide (rGO), given MO degradation rate of 57, 65, 80, and 90% for BVG, CBVG3, CBVG5, and CBVG7, respectively after exposure to visible light for 120 min. Effects of experimental process parameters including initial dye concentration, catalysts loading and effect of different modification regimes were studied using CBVG7, which exhibited the highest efficiency. The improvement in the photocatalytic efficiency may be attributed to increased surface area of the nanocomposites, enhanced light absorption capacity and improved charge separation. The study showed a one-pot synthesis route to prepare promising CeVO4/BiVO4/GO nanocomposites for the photo-enhanced degradation of dye contaminants.

  相似文献   

18.
Tungsten oxide (W) decorated titanium oxide (T) adsorbed onto a graphene (Gr) and modified the glassy carbon electrode for the electrochemical quantification of riboflavin (RF) in edible food and pharmaceuticals. For comparison, nanocomposites are formed using graphene oxide (GO), reduced graphene oxide (rGO) and pure graphite (G) sheets to study the electrochemical activities towards riboflavin. The ternary WTGr modified GCE shows the highest electrocatalytic activity due to synergetic interactions between the metal oxide and graphene. The electrochemical observations are supported by the SEM, HRTEM, XRD, UV-Vis, Zeta potential (ζ) and size data. The sensor shows a wide linear range 20 nM–2.5 μM with a detection limit 25.24 nM and sensitivity (4.249×10−8 A/nM). The fabricated sensor is validated in real samples.  相似文献   

19.
Two effective methods to prepare reduced graphene oxide (rGO)/hematite nanostructured photoanodes and their photoelectrochemical characterization towards water splitting reactions are presented. First, graphene oxide (GO) is reduced to rGO using hydrazine in a basic solution containing tetrabutylammonium hydroxide (TBAOH), and then deposited over the nanostructured hematite photoanodes previously treated at 750 °C for 30 min. The second method follows the deposition of a paste containing a mixture of hematite nanoparticles and rGO sheets by the doctor‐blade method, varying the rGO concentration. Since hematite suffers from low electron mobility, a low absorption coefficient, high recombination rates and slow reaction kinetics, the incorporation of rGO in the hematite can overcome such limitations due to graphene's exceptional properties. Using the first method, the rGO incorporation results in a photocurrent density increase from 0.56 to 0.82 mA cm?2 at 1.23 VRHE. Our results indicate that the rGO incorporation in the hematite photoanodes shows a positive effect in the reduction of the electron–hole recombination rate.  相似文献   

20.
The key factors in the design of nanocomposites include obtaining a good adhesion between components and homogeneous dispersion of the nanoadditive in the polymer matrix. Direct mixing of graphene with polymers which are then processed by melt compounding method results in strong tendency of nanoadditive to agglomerate. The article presents a new approach to obtaining poly(vinylidene fluoride)/graphene (PVDF/rGO) nanocomposites in the form of fibers. This method is characterized by the use of graphene oxide (GO) dispersed in the plasticizer instead of graphene. The combination of the fibers forming process with simultaneous reduction of GO to rGO allowed the authors to obtain nanocomposites with graphene homogeneously dispersed in the polymer matrix. Moreover, addition of graphene resulted in formation of β-phase in the nanocomposites, which is characteristic for PVDF and responsible for pyroelectric and piezoelectric properties of this polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号