首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A two-stage process has been developed to generate the silica-based macromonomer through surface-modification of silica with polymerizable vinyl groups. The silica surfaces were treated with excess 2,4-toluene diisocynate (TDI), after which the residual isocyanate groups were converted into polymerizable vinyl groups by reaction with hydroxypropylacrylate (HPA). Thus, polystyrene/silica nanocomposites were prepared by conventional radical copolymerization of styrene with silica macromonomer. The main effecting factors, such as ratios of styrene to the macromonomer, together with polymerization time on the copolymerization were studied in detail. FTIR, DSC and TGA were utilized to characterize the nanocomposites. Experimental results revealed that the silica nanoparticles act as cross-linking points in the polystytene/silica nanocomposites, and the glass transition temperatures of the nanocomposites are higher than that of the corresponding pure polystyrene. The glass transition temperatures of nanocomposites increased with the increasing of silica contents, which were further ascertained by DSC.  相似文献   

2.
Crystalline silica in cristobalite phase was successfully prepared at a relatively low temperature of 800 °C by calcinating polyimide/silica hybrid films under ambient air. X-ray photoelectron spectroscopy measurements show that the product is silica after calcination. It is found that the crystallinity is dependent on the removing rate and the strength of the interaction between polyimide and silica. The presence of polyimide plays an important role in the growth of silica. Calcination to remove polyimide with rapid heating results in lower crystallinity compared with calcination with slow heating. For samples with the same content of silica, the crystallinity changes with the strength of the interaction between polyimide and silica molecules.  相似文献   

3.
The simpler non-supercritical drying approach has been used for the first time for the preparation of silica–silica composite aerogels (CA) and the efficiency of the process being demonstrated by testing the use of the aerogels for simulated high level nuclear waste confinement. Compositions of 5, 10, 20, 30, 40 and 50 wt% of silica (aerosil® 380) in silica–aerogel were prepared by introducing pyrogenic silica in to silica sol derived by hydrolysis of Tetraethoxy silane (TEOS). The silica–silica composite aerogels (CA) possessed very high surface area and low bulk densities. The effectiveness of the prepared composite aerogels as precursor for high level nuclear waste immobilized glass is also presented. Neodymium nitrate dissolved in isopropanol is used to simulate +3 valent actinides. The stability of neodymium in the glass matrix has been found to be extremely high. Transmission electron microscopy (TEM) has been used to characterise the aerogels as well as neodymium incorporated sintered gels. X-ray diffraction (XRD) studies of the sintered samples reveal the formation of neodymium silicates.  相似文献   

4.

Substantial knowledge gap still exists in understanding Stöber silica’s confusing microporosity. In this work, we utilized simultaneous thermal analysis coupled with Fourier transform infrared spectroscopy to characterize Stöber silica samples prepared with various post-treatments including water or ethanol washing and drying at different temperatures. The results suggest that ammonia-catalyzed ethoxylation between ethanol and silanol groups can take place during drying, and the resulting ethoxyl groups along with Si-containing oligomers may contribute to serious micropore blocking. On the other hand, water washing is effective to hydrolyze and remove these pore-blocking materials and thus enable cleared micropores. Several interesting findings including the very sharp DSC peaks, high evolving temperature of ethanol, and pyrolysis of organic matters are linked to Stöber silica’s micropores. Our work has undoubtedly improved the mechanistic understanding of Stöber silica’s microporosity and will thus facilitate the practical optimization and application of this material.

  相似文献   

5.
We demonstrate an enhancement of corrosion protection by sol–gel silica film including mixed silica nanoparticles of 10 and 50 nm. Low-temperature silica films were prepared by sol–gel dip-coating method, followed by a thermal annealing at 200 °C. Importantly, film with mixed particles exhibits lower corrosion current density and slower loss of film resistance during the immersion in electrolyte solution, showing an improved corrosion protection over the film with 50 nm particles. The improved corrosion protectability of the mixed particles comes from the suppressed diffusion of ionic species by a close packing of 10 nm particles.  相似文献   

6.
Although the effects of filler nanoparticles size and surface treatment on the glass transition temperature of the matrix phase have received well-deserved attention, nanofiller effects on other physical parameters associated with the glass transition have received less interest. To better understand how the incorporation of nanofillers affects the enthalpic relaxations associated with the glass transition, differential scanning calorimeter measurements were carried out on silica–polyvinyl acetate nanocomposites with respect to filler content, annealing temperature, and annealing period. As expected, longer annealing periods below the glass transition temperature resulted in an increase of the subsequent enthalpic relaxations. However, the presence of filler substantially reduces the enthalpic relaxation relative to that of the neat polymer at longer annealing periods only. The underlying enthalpic relaxations and the effects suppressed by the fillers are specific to the annealing temperature. These results suggest a significant alteration in the physical state of the matrix because of the presence of the filler particles. However, this does not imply the existence of a glassy layer or layers with a glass transition gradient near the filler surface. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2733–2740, 2008  相似文献   

7.
Bacterial cellulose (BC) hydrated membranes present nanometric reticulated structure that can be used as a template in the preparation of new organic–inorganic hybrids. BC–silica hybrids were prepared from BC membranes and tetraethoxysilane, (TEOS) at neutral pH conditions at room temperature. Macroscopically homogeneous membranes were obtained containing up to 66 wt.% of silica spheres, 20–30 nm diameter. Scanning electron micrographs clearly show the silica spheres attached to cellulose microfibrils. By removing the cellulose, the silica spheres can be easily recovered. The new hybrids are stable up to 300 °C and display a broad emission band under UV excitation assigned to oxygen-related defects at the silica particles surface. Emission color can be tuned by changing the excitation wavelength.  相似文献   

8.
Herein we present the synthesis of anatase–silica aerogels based on the controlled gelation of preformed nanoparticle mixtures. The monolithic aerogels with macroscopic dimensions show large specific surface areas, and high and uniform porosities. The major advantage of such a particle-based approach is the great flexibility in pre-defining the compositional and structural features of the final aerogels before the gelation process by fine-tuning the properties of the titania and silica building blocks (e.g., size, composition and crystallinity) and their relative ratio in the dispersion. Specific surface functionalization enables control over the interaction between the nanoparticles and thus over their distribution in the aerogel. Positively charged titania nanoparticles are co-assembled with negatively charged Stoeber particles, resulting in a binary aerogel with a crystalline anatase and amorphous silica framework directly after supercritical drying without any calcination step. Titania–silica aerogels combine the photocatalytic activity of the anatase nanoparticles with the extensive silica chemistry available for silica surface functionalization.  相似文献   

9.
Porous monolithic gels based on silica with pore size from 16 nm to 3–5 μm have been synthesized using sol–gel technology. Parameters of porous structure are determined by the components molar ratio in the reaction mixture. The reduction processes of silver ions by formamide in the synthesized porous gel were studied. It has been shown that at the initial stage of the reaction, silver particles with size up to 10 nm are formed in the absence of any stabilizers. The composites Ag/SiO2 were synthesized by means of the threefold impregnation of porous monoliths using the solution of silver nitrate in the mixture of methanol and formamide. Their catalytic activity in the CO oxidation was studied. It was discovered that after activation in oxygen and hydrogen the samples display a low temperature activity, which depends on the number of Si–O-nonbridging oxygen groups on the surface of silica porous monoliths.  相似文献   

10.
A novel non-suffactant method was described to synthesize mesoporous silica using dye basic fuchsin as template.Chemical reactions were introduced into the formation of mesopores rather than the weak electrostatic or hydrogen-bonding interactions in the traditional surfactant routes.The reactant composition was found to be crucial to the pore structure of objective product.The formation mechanism of mesopore was also proved.  相似文献   

11.
Research on Chemical Intermediates - Silica–phosphate-supported copper catalyst was prepared by neutralization of sodium silicate with orthophosphoric acid followed by the addition of copper...  相似文献   

12.
In this work the research results on the sol–gel synthesis and structure of silica nanocomposites, containing carrageenan and their application as carriers for cell immobilization were described. The samples were prepared at room temperature by replacing different quantity of the inorganic precursor with κ-carrageenan. For studying the structure of the synthesized hybrids the following methods were used: FT-IR, XRD, BET-Analysis, SEM, AFM and Roughness Analysis. The influence of the type of silicon precursors, nature and quantity of organic component on the structure, surface area, design and size of nanostructures was established. The possibility of application of the synthesized biocatalysts in an enzyme degradation process of the toxic, carcinogenic and mutagenic substances benzonitrile, fumaronitrile, o-, m-, and p-tolunitriles was investigated at batch experiments. A two-step biodegradation process in a column bioreactor of fumaronitrile was followed. After operation of the system for 8 h at a flow rate 45 mL h?1 and at 60 °C, the overall conversion was 89%, showing a good stability of the developed process.  相似文献   

13.
In this work, a series of nanoporous silica materials have been prepared as adsorbents for volatile (?)-menthol, a molecule widely used in food, pharmacy, and cosmetics. The isothermal release properties of (?)-menthol have been investigated and correlated with the structural parameters of nanoporous absorbents. A rotary evaporation method is used to effectively load (?)-menthol into the nanopores of adsorbents and to prevent the whisker growth during the adsorption. It is demonstrated that the pore size, structure, wall thickness and surface functionality of nanoporous adsorbents are four important parameters to influence the isothermal release of (?)-menthol. By tuning these parameters of nanoporous silica adsorbents, controlled release of (?)-menthol can be achieved. A vesicular silica material with thick wall and hydrophobic functional groups is shown to possess the slowest release performance. Our contribution provides important knowledge for the future applications of nanoporous silica materials in pharmacy and cosmetics.  相似文献   

14.
High-density polyethylene-based nanocomposites were prepared through a melt compounding process by using surface functionalized fumed silica nanoparticles in various amounts, in order to investigate their capability to improve both mechanical properties and resistance to thermal degradation. The fine dispersion of silica aggregates led to noticeable improvements of both the elastic modulus and of the stress at yield proportionally to the filler content, while the tensile properties at break were not impaired even at elevated filler content. Thermogravimetric analysis showed that the selected nanoparticles were extremely effective both in increasing the decomposition temperature and in decreasing the mass loss rate, even at relatively low filler loadings. The formation of a char enriched layer, limiting the diffusion of the oxygen through the nanofilled samples, was responsible of noticeable improvements of the limiting oxygen index, especially at elevated silica loadings. In contrast with commonly reported literature results, cone calorimeter tests also revealed the efficacy of functionalized nanoparticles in delaying the time to ignition and in decreasing the heat release rate values. Therefore, the addition of functionalized fumed silica nanoparticles could represent an effective way to enhance the flammability properties of polyolefin matrices even at low filler concentrations.  相似文献   

15.
Cellulose–silica composite aerogels were prepared via “one-pot” process: aqueous solutions of cellulose–8 wt% NaOH and sodium silicate were mixed, coagulated and dried with supercritical CO2. The system was studied both in the fluid and solid (dry) states. Cellulose and sodium silicate solutions were mixed at different temperatures and concentrations; mixture properties were monitored using dynamic rheology. The gelation time of the mixture was strongly reduced as compared to that of cellulose–NaOH solutions; we interpret this phenomenon as cellulose self-aggregation inducing partial coagulation due to competition for the solvent with sodium silicate. The gelled cellulose/sodium silicate samples were placed in aqueous acid solution which completed cellulose coagulation and led to in situ formation of sub-micronic silica particles trapped in a porous cellulose matrix. After drying with supercritical CO2, an organic–inorganic aerogel composite was formed. The densities obtained were in the range of 0.10–0.25 g/cm3 and the specific surface area was between 100 and 200 m2/g. The silica phase was shown to have a reinforcing effect on the cellulose aerogel, increasing its Young’s modulus.  相似文献   

16.
Release me! A new class of photothermal-responsive [2]rotaxane-appended mesoporous silica nanoparticles (MSNPs) was developed. Remote-controlled movement of the α-cyclodextrin ring?(green) upon trans-cis isomerization of the azobenzene axle?(red) enables the loading and release of drugs on demand. Curcumin-loaded MSNPs were shown to release curcumin into zebrafish larvae upon treatment with visible light or heat.  相似文献   

17.
Infrared reflectance and Fourier transform Raman spectroscopy have been used to study silica and silica/titania monoliths produced by the sol—gel route which had been subjected to a series of heat treatments. With increasing thermal treatment temperature, the gel—glass matrix is strengthed by bond shortening and a reduction in mean SiOSi bond angle and angular distribution for this feature. Results obtained at a range of temperatures were in good agreement to those obtained for vitreous silica. The incorporation of low levels (3% by weight) of titanium led to more disordered glasses which contain titanium in tetrahedral sites only. Evidence was obtained for the formation of SiOTi bonds, principally during the latter stages of densification at temperatures between 615 and 1000°C.  相似文献   

18.
Porous membranes having various average pore sizes, ranging from 1 to 4 nm, were prepared from silica–zirconia composite colloidal sols by sol–gel processes, and were used for nanofiltration (NF) experiments in non-aqueous solutions of ethanol and methanol. Silica–zirconia membranes, which were tested in pure alcohol solutions for the first time after the preparation of the membrane, showed a gradual decrease in flux for approximately 100 h and then reached a steady flux. When the feed, after reaching the steady flux with ethanol, was changed to another alcohol, steady flux was attained after only several hours. Ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol (PEG) of various molecular weights (PEG400, 600, 1000, and 2000) were nanofiltrated in methanol and ethanol solutions at 50°C. Rejections in non-aqueous solutions increased with applied pressure, which is similar to aqueous solutions. Control of pore size of silica–zirconia membranes showing molecular weight cut-offs in methanol solutions at 300, 600, 1000, and >1000, respectively, was possible by the appropriate choice of colloidal particle sizes. Rejection in methanol solution showed a tendency similar to that in ethanol solution, while rejection in methanol was slightly larger than in ethanol solutions. In addition, rejection in water was much smaller than in methanol solution. For example, the rejection of PEG600 in water and methanol was 0.03 and 0.74, respectively. These results suggest that solvent type plays an important role in determining rejection, as a result of the interaction with solvents and/or membrane surface.  相似文献   

19.
Electrochemical oxidation of aniline encapsulated in a silica solid electrolyte prepared by a sol–gel process yielded products that were dependent on the pore size. An acid-catalyzed process that used tetramethyl orthosilicate as the precursor and aniline as a dopant yielded the silica. When the aging time was limited to one day so that a mesoporous solid was obtained, the potentiodynamic oxidation of aniline at a carbon fiber electrode resulted in the formation of polyaniline. With aging times of 3–5 days, microporous silica was obtained. In this electrolyte, the formation of dimers and other oligomers was observed by cyclic voltammetry. Evidence for these products was the presence of a quasi-reversible redox couple at 0.2 V vs Ag/AgCl that was previously related to oligomeric aniline by Raman spectroscopy. The results supported the hypothesis that the pore structure of sol–gel electrolytes can influence the pathways of electrode reactions therein.  相似文献   

20.
Xylene solutions of perhydropolysilazane (PHPS) were used as the coating solutions for preparing silica coatings at room temperature. The PHPS-to-silica conversion was achieved by exposing the spin-on coatings to the vapor from aqueous ammonia. In order to examine the significance of the mechanical properties of the PHPS-derived silica coatings, the pencil hardness was measured, which was compared with that of tetraethoxysilane (TEOS)-derived silica coatings. The pencil hardness was over 9H at a load of 1 kg, which was much higher than that of the TEOS-derived silica gel films, and was comparable to that of the TEOS-derived films heat treated at 300 °C. Second, poly(methyl methacrylate) (PMMA)–silica hybrid coatings were prepared from xylene solutions of PMMA and PHPS via exposure to the vapor from aqueous ammonia. Crack-free, optically transparent PMMA–silica hybrid coatings could be prepared, where PHPS-to-silica conversion was confirmed by infrared absorption spectroscopy. The refractive index was around 1.42–1.50, and the contact angle with water increased from 35 to 70° with increasing PMMA content. The pencil hardness greatly increased during the PHPS-to-silica conversion, and was much higher than that of the non-heat treated TEOS-derived hybrid coatings. The durability in tetrahydrofuran (THF) was also evaluated by measuring the reduction in thickness occurring during soaking in THF. The durability decreased with increasing PMMA content, but was much higher than that of the non-heat treated TEOS-derived hybrid coatings. Both the hardness and the durability were comparable to those of the TEOS-derived coatings heated at 300 °C. The hybrid coatings could also be deposited on poly(ethylene terephthalate) substrates, where no cracks were observed at high PMMA contents even when the substrate was bent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号