首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, two 3‐dimensional quantitative structure‐activity relationship models for 60 human immunodeficiency virus (HIV)‐1 protease inhibitors were established using random sampling analysis on molecular surface and translocation comparative molecular field vector analysis (Topomer CoMFA). The non–cross‐validation (r2), cross‐validation (q2), correlation coefficient of external validation (Q2ext), and F of 2 models were 0.94, 0.80, 0.79, and 198.84 and 0.94, 0.72, 0.75, and 208.53, respectively. The results indicated that 2 models were reasonable and had good prediction ability. Topomer Search was used to search R groups in the ZINC database, 20 new compounds were designed, and the Topomer CoMFA model was used to predicate the biological activity. The results showed that 18 new compounds were more active than the template molecule. So the Topomer Search is effective in screening and can guide the design of new HIV/AIDS drugs. The mechanism of action was studied by molecular docking, and it showed that the protease inhibitors and Ile50, Asp25, and Arg8 sites of HIV‐1 protease have interactions. These results have provided an insight for the design of new potent inhibitors of HIV‐1 protease.  相似文献   

2.
Prostate cancer cells produce high (microgram to milligram/milliliter) levels of the serine protease Prostate-Specific Antigen (PSA). PSA is enzymatically active in the extracellular fluid surrounding prostate cancers but is found at 1,000- to 10,000-fold lower concentrations in the circulation, where it is inactivated due to binding to abundant serum protease inhibitors. The exclusive presence of high levels of active PSA within prostate cancer sites makes PSA an attractive candidate for targeted imaging and therapeutics. A synthetic approach based on a peptide substrate identified first peptide aldehyde and then boronic acid inhibitors of PSA. The best of these had the sequence Cbz-Ser-Ser-Lys-Leu-(boro)Leu, with a Ki for PSA of 65 nM. The inhibitor had a 60-fold higher Ki for chymotrypsin. A validated model of PSA's catalytic site confirmed the critical interactions between the inhibitor and residues within the PSA enzyme.  相似文献   

3.
The equilibrium and intraparticle diffusion of ronidazole (RNZ) and sulfamethoxazole (SMX) during the adsorption on granular activated carbon (GAC) from aqueous solution was investigated in this work. The solution pH, temperature, ionic strength and water matrix affected the adsorption capacity of GAC towards SMX, but no effect was observed for the adsorption of RNZ. This behavior was due to the different mechanism involved in the adsorption of both antibiotics. The adsorption capacity of GAC towards RNZ was greater than that towards SMX. Molecular computation allowed the estimation of the binding free energy and confirmed that the adsorption of RNZ was more favorable than the adsorption of SMX. The adsorption mechanism of both antibiotics is governed by π–π dispersive interactions, and molecular simulation demonstrated that the coulombic interactions did not affect, but the solvation and nonpolar interactions play a significant role on the adsorption of both antibiotics. The application of diffusional models revealed that the overall adsorption rate of both antibiotics is controlled by intraparticle diffusion. Moreover, the surface diffusion was more predominant than the pore volume diffusion. Besides, surface diffusion coefficient, Ds, for RNZ was not a function of the aqueous matrix, whereas Ds for SMX was highly dependent on the water matrix.  相似文献   

4.
Durig  James R.  Ng  Kar Wai  Zheng  Chao  Shen  Shiyu 《Structural chemistry》2004,15(2):149-157
Fifty different carbon–hydrogen distances have been predicted from ab initio MP2/6-311+G(d,p) calculations, which range from a short value of 1.0611 Å for HCNO to a long value of 1.1044 Å for H2CO. The values include those predicted for a series of methyl (CH3) moieties where the two different C–H distances vary by as much as 0.005 Å. These predicted values are compared to r 0(C–H) distances obtained from the isolated carbon–hydrogen stretching frequencies, as well as to r 0 or r s parameters obtained from microwave data. Except for the very short C–H bonds, the ab initio values from the MP2/6–311+G(d,p) calculations can be used for the carbon–hydrogen distances with error limits of ± 0.003 Å. By utilizing the spectral data from CD3CClO, it is shown that combination bands in the C–H stretching region could cause problems in the identification of the isolated C–H stretching frequency from the CD2HCClO isotopomer. The value of the ab initio predicted C–H distances for checking unusually long or short r s (C–H) or r 0 values is demonstrated.  相似文献   

5.
The pleckstrin homology (PH) domain of general receptor for phosphoionositides 1 (GRP1-PHD) binds specifically to phosphatidylinositol (3,4,5)-triphosphate (PIP3), and acts as a second messenger. Using an extensive array of molecular dynamics (MD) simulations employing highly mobile membrane mimetic (HMMM) model as well as complementary full membrane simulations, we capture differentiable binding and dynamics of GRP1-PHD in the presence of membranes containing PC, PS, and PIP3 lipids in varying compositions. While GRP1-PHD forms only transient interactions with pure PC membranes, incorporation of anionic lipids resulted in stable membrane-bound configurations. We report the first observation of two distinct PIP3 binding modes on GRP1-PHD, involving PIP3 interactions at a “canonical” and at an “alternate” site, suggesting the possibility of simultaneous binding of multiple anionic lipids. The full membrane simulations confirmed the stability of the membrane bound pose of GRP1-PHD as captured from our HMMM membrane binding simulations. By performing additional steered membrane unbinding simulations and calculating nonequilibrium work associated with the process, as well as metadynamics simulations, on the protein bound to full membranes, allowing for more quantitative examination of the binding strength of the GRP1-PHD to the membrane, we demonstrate that along with the bound PIP3, surrounding anionic PS lipids increase the energetic cost of unbinding of GRP1-PHD from the canonical mode, causing them to dissociate more slowly than the alternate mode. Our results demonstrate that concurrent binding of multiple anionic lipids by GRP1-PHD contributes to its membrane affinity, which in turn control its signaling activity. © 2019 Wiley Periodicals, Inc.  相似文献   

6.
Modulation of protein-protein interactions (PPI) has emerged as a new concept in rational drug design. Here, we present a computational protocol for identifying potential PPI inhibitors. Relevant regions of interfaces (epitopes) are predicted for three-dimensional protein models and serve as queries for virtual compound screening. We present a computational screening protocol that incorporates two different pharmacophore models. One model is based on the mathematical concept of autocorrelation vectors and the other utilizes fuzzy labeled graphs. In a proof-of-concept study, we were able to identify serine protease inhibitors using a predicted trypsin epitope as query. Our virtual screening framework may be suited for rapid identification of PPI inhibitors and suggesting bioactive tool compounds.  相似文献   

7.
The channel blocker picrotoxinin has been studied with GABAA-ρ1 and GABAA-ρ2 homology models based on the GluCl crystal structure. Picrotoxinin is tenfold more potent for GABAA-ρ2 than for GABAA-ρ1 homomeric channels. This intra-subunit selectivity arises from the unconserved residues at the 2’ sites, which are the essential molecular basis for both the binding and potency of picrotoxinin. The serine residues at the 2’ positions of the ρ2 channel are predicted to form multiple hydrogen bonds and hydrophobic interactions with picrotoxinin, whereas the proline residues in the 2’ positions of ρ1 channels are predicted to form only hydrophobic contacts with picrotoxinin. However, although the studied ρ1 P2’G, A, and V models form no hydrogen bonds with picrotoxinin, they may participate in several hydrophobic interactions, and the ligand may have distinctive binding modes with GABAA-ρ mutant channels. Picrotoxinin has a lower Emodel value with ρ2 than ρ1 homomeric models (−47 Kcal/mol and −36 Kcal/mol, respectively), suggesting that picrotoxin blocks the pores of the ρ2 channels more effectively.  相似文献   

8.
Prion diseases are a group of neurodegenerative diseases based on the conformational conversion of the normal form of the prion protein (PrPC) to the disease‐related scrapie isoform (PrPSc). Copper(II) coordination to PrPC has attracted considerable interest for almost 20 years, mainly due to the possibility that such an interaction would be an important event for the physiological function of PrPC. In this work, we report the copper(II) coordination features of the peptide fragment Ac(PEG11)3PrP(60‐114) [Ac=acetyl] as a model for the whole N‐terminus of the PrPC metal‐binding domain. We studied the complexation properties of the peptide by means of potentiometric, UV/Vis, circular dichroism and electrospray ionisation mass spectrometry techniques. The results revealed that the preferred histidyl binding sites largely depend on the pH and copper(II)/peptide ratio. Formation of macrochelate species occurs up to a 2:1 metal/peptide ratio in the physiological pH range and simultaneously involves the histidyl residues present both inside and outside the octarepeat domain. However, at increased copper(II)/peptide ratios amide‐bound species form, especially within the octarepeat domain. On the contrary, at basic pH the amide‐bound species predominate at any copper/peptide ratio and are formed preferably with the binding sites of His96 and His111, which is similar to the metal‐binding‐affinity order observed in our previous studies.  相似文献   

9.
The molecular structure of BeBr2 has been investigated by gas-phase electron diffraction at the temperature 800(10) K. The conventional analysis yielded the following values: r g(Be–Br) = 1.944(6)Å, l(Be–Br) = 0.068(4)Å, r g(Br–Br) = 3.848(8)Å, l(Br–Br) = 0.109(3)Å, k(Be–Br) = 1.1(1.1) × 10–5 Å3, (Br–Br) = 2.1(1.0) × 10–5 Å3. Three models of nuclear dynamics were used to simulate the conventional analysis values—infinitesimal vibrations and two models, which take into account the kinematic and dynamic anharmonicity of the bending vibration. All models give similar values of bond angle, amplitudes, and shrinkage, excluding the harmonic model, which yields too low value l(Br–Br). The equilibrium bond distance r e(Be–Br) = 1.932(11) Å was estimated, taking into account the anharmonicity corrections for stretching and bending vibrations and centrifugal distortion.  相似文献   

10.
《Chemistry & biology》1998,5(9):475-488
Background: The serine protease prostate-specific antigen (PSA) is a useful clinical marker for prostatic malignancy. PSA is a member of the kallikrein subgroup of the (chymo)trypsin serine protease family, but differs from the prototypical member of this subgroup, tissue kallikrein, in possessing a specificity more similar to that of chymotrypsin than trypsin. We report the use of two strategies, substrate phage display and iterative optimization of natural cleavage sites, to identify labile sequences for PSA cleavage.Results: Iterative optimization and substrate phage display converged on the amino-acid sequence SS(Y/F)YIS(G/S) as preferred subsite occupancy for PSA. These sequences were cleaved by PSA with catalytic efficiencies as high as 220–3100 M−1 s−1, compared with values of 2–46 M−1 s−1 for peptides containing likely physiological target sequences of PSA from the protein semenogelin. Substrate residues that bind to secondary (non-S1) subsites have a critical role in defining labile substrates and can even cause otherwise disfavored amino acids to bind in the primary specificity (S1) pocket.Conclusions: The importance of secondary subsites in defining both the specificity and efficiency of cleavage suggests that substrate recognition by PSA is mediated by an extended binding site. Elucidation of preferred subsite occupancy allowed refinement of the structural model of PSA and should facilitate the development of more sensitive activity-based assays and the design of potent inhibitors.  相似文献   

11.
The resistance to dieldrin (RDL) receptor is an insect pentameric ligand-gated ion channel (pLGIC). It is activated by the neurotransmitter γ-aminobutyric acid (GABA) binding to its extracellular domain; hence elucidating the atomistic details of this interaction is important for understanding how the RDL receptor functions. As no high resolution structures are currently available, we built homology models of the extracellular domain of the RDL receptor using different templates, including the widely used acetylcholine binding protein and two pLGICs, the Erwinia Chrysanthemi ligand-gated ion channel (ELIC) and the more recently resolved GluCl. We then docked GABA into the selected three dimensional structures, which we used as starting points for classical molecular dynamics simulations. This allowed us to analyze in detail the behavior of GABA in the binding sites, including the hydrogen bond and cation-π interaction networks it formed, the conformers it visited and the possible role of water molecules in mediating the interactions; we also estimated the binding free energies. The models were all stable and showed common features, including interactions consistent with experimental data and similar to other pLGICs; differences could be attributed to the quality of the models, which increases with increasing sequence identity, and the use of a pLGIC template. We supplemented the molecular dynamics information with metadynamics, a rare event method, by exploring the free energy landscape of GABA binding to the RDL receptor. Overall, we show that the GluCl template provided the best models. GABA forming direct salt-bridges with Arg211 and Glu204, and cation-π interactions with an aromatic cage including Tyr109, Phe206 and Tyr254, represents a favorable binding arrangement, and the interaction with Glu204 can also be mediated by a water molecule.  相似文献   

12.
Proteases catalyse irreversible posttranslational modifications that often alter a biological function of the substrate. The protease dipeptidyl peptidase 4 (DPP4) is a pharmacological target in type 2 diabetes therapy primarily because it inactivates glucagon-like protein-1. DPP4 also has roles in steatosis, insulin resistance, cancers and inflammatory and fibrotic diseases. In addition, DPP4 binds to the spike protein of the MERS virus, causing it to be the human cell surface receptor for that virus. DPP4 has been identified as a potential binding target of SARS-CoV-2 spike protein, so this question requires experimental investigation. Understanding protein structure and function requires reliable protocols for production and purification. We developed such strategies for baculovirus generated soluble recombinant human DPP4 (residues 29–766) produced in insect cells. Purification used differential ammonium sulphate precipitation, hydrophobic interaction chromatography, dye affinity chromatography in series with immobilised metal affinity chromatography, and ion-exchange chromatography. The binding affinities of DPP4 to the SARS-CoV-2 full-length spike protein and its receptor-binding domain (RBD) were measured using surface plasmon resonance and ELISA. This optimised DPP4 purification procedure yielded 1 to 1.8 mg of pure fully active soluble DPP4 protein per litre of insect cell culture with specific activity >30 U/mg, indicative of high purity. No specific binding between DPP4 and CoV-2 spike protein was detected by surface plasmon resonance or ELISA. In summary, a procedure for high purity high yield soluble human DPP4 was achieved and used to show that, unlike MERS, SARS-CoV-2 does not bind human DPP4.  相似文献   

13.
Computational blind docking approach was used for mapping of possible binding sites in L-type pyruvate kinase subunit for peptides, RRASVA and the phosphorylated derivative RRAS(Pi)VA, which model the phosphorylatable N-terminal regulatory domain of the enzyme. In parallel, the same docking analysis was done for both substrates of this enzyme, phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP), and for docking of fructose 1,6-bisphosphate (FBP), which is the allosteric activator of the enzyme. The binding properties of the entire surface of the protein were scanned and several possible binding sites were identified in domains A and C of the protein, while domain B revealed no docking sites for peptides or for substrates or the allosteric regulator. It was found that the docking sites of different ligands were partially overlapping, pointing to the possibility that some regulatory effects, observed in the case of L-type pyruvate kinase, may be caused by the competition of different ligands for the same binding sites.  相似文献   

14.
Factor Xa is a serine protease which activates thrombin and plays a key regulatory role in the blood-coagulation cascade. Factor Xa is at the crossroads of the extrinsic and intrinsic pathways of coagulation and, hence, has become an important target for the design of anti-thrombotics (inhibitors). It is not known to be involved in other processes than hemostasis and its binding site is different to that of other serine proteases, thus facilitating selective inhibition. The design of high-affinity selective inhibitors of factor Xa requires knowledge of the structural and dynamical characteristics of its active site. The three-dimensional structure of factor Xa was resolved by X-ray crystallography and refined at 2.2 Å resolution by Padmanabhan and collaborators. In this article we present results from molecular dynamics simulations of the catalytic domain of factor Xa in aqueous solution. The simulations were performed to characterise the mobility and flexibility of the residues delimiting the unoccupied binding site of the enzyme, and to determine hydrogen bonding propensities (with protein and with solvent atoms) of those residues in the active site that could interact with a substrate or a potential inhibitor. The simulation data is aimed at facilitating the design of high-affinity selective inhibitors of factor Xa.  相似文献   

15.
The interactions of lanthanide ions (Ln3+) with bovine serum albumin (BSA) under mimetic physiological conditions (310.15 K, pH 6.7, 0.1MNaCl) were studied by microcalorimetry. For the first time, based on Two Sets of Independent Sites Model, molar enthalpies (Δr H m1, Δr H m2) and coordination number (n 1, n 2) of the two sets of binding sites with different affinity were obtained directly from the microcalorimetric results. It was shown that the interactions are endothermic and entropy-driving processes. By combining with fluorescence spectroscopy, other thermodynamic parameters (Δr G m1, Δr S m1) were determined for high-affinity specific sites.  相似文献   

16.
Hydration is a critical factor in the ligand binding process. Herein, to examine the hydration states of ligand binding sites, the three-dimensional distribution function for the water oxygen site, gO( r ) , is computed for 3,706 ligand-free protein structures based on the corresponding small molecule–protein complexes using the 3D-RISM theory. For crystallographic waters (CWs) close to the ligand, gO( r ) reveals that several CWs are stabilized by interaction networks formed between the ligand, CW, and protein. Based on the gO( r ) for the crystallographic binding pose of the ligand, hydrogen bond interactions are dominant in the highly hydrated regions while weak interactions such as CH-O are dominant in the moderately hydrated regions. The polar heteroatoms of the ligand occupy the highly hydrated and moderately hydrated regions in the crystallographic (correct) and wrongly docked (incorrect) poses, respectively. Thus, the gO( r ) of polar heteroatoms may be used to distinguish the correct binding poses.  相似文献   

17.
The importance of the inclusion of the Madelung potential in cluster models of ionic surfaces is the subject of this work. We have determined Hartree-Fock all electron wave functions for a series of MgO clusters with and without a large array of surrounding point charges (PC) chosen to reproduce the Madelung potential. The phenomena investigated include: the reactivity of surface oxygens toward CO2, atomic hydrogen, and H+; the geometry and adsorption energy of water and the vibrational shift of CO adsorbed at Mg2+ sites; the electronic structure and the hyperfine coupling constants of oxygen vacancies, the paramagnetic Fs+ centers. While some clusters give results which are virtually independent of the presence of the PCs, other clusters, typically of small size, give physically incorrect results when the PCs are not included. The embedding of the cluster in PCs guarantees a similar response for clusters of different size, at variance with the bare clusters, where the long range coulombic interactions are not included. © 1997 by John Wiley & Sons, Inc.  相似文献   

18.
The zero-point average structures of acetyl chloride and acetyl bromide have been determined by the combined use of their moments of inertia and average distances, obtained by means of microwave spectroscopy and electron diffraction. The rz parameters determined are as follows: rz(CO) = 1.185 ± 0.003 Å, rz(C-Cl) = 1.796 ± 0.002 Å, rz(C-C) = 1.505 ± 0.003 Å, rz(C-H) = 1.092 ± 0.005 Å, φz(OCCl) = 121.2 ± 0.6°, φz(CCCl) = 111.6 ± 0.6°, φz(HCH) = 108.8 ± 0.8° and tilt(CH3) = 1.3 ± 1.0°, for chloride; rz(CO) = 1.181 ± 0.003 Å, rz(C-Br) = 1.974 ± 0.003 Å, rz(C-C) = 1.516 ± 0.003 Å, φz(OCBr) = 122.3 ± 1.5°, φz(CCBr) = 111.0 ± 1.5°, φz(HCH) = 109.9 ± 1.1°, tilt(CH3) = 1.9 ± 1.0°, for bromide. The barriers V3 to internal rotation have been revised to 1260 and 1256 cal mol−1 for the chloride and bromide, respectively.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号