首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Addition of SF5Cl and TeF5Cl on 〈C?C〉 double bonds Addition of SF5Cl on 〈C?C〉 double bonds is investigated in a few examples. The results indicate a radical mechanism, in which the SF5· free radical attacks the double bonds first. This is in agreement with many earlier findings. The direction of the addition is not changed by sterical influences. Sterically strained derivatives such as (SF5)2CH? CF2Cl and SF5(CF3)2C? CH2Cl are obtained. In a single case the addition of TeF5Cl on CH2?CF2 was possible, but the analogous reaction with SeF5Cl was unsuccessful.  相似文献   

2.
Preparation of μ-Sulfurdisulfonium Salts [(CH3)2S? Sx? S(CH3)2]2+2A? (x = 1–3, A? = AsF6?, SbF6?, SbCl6?). On the Analogy of the Reactivity of Sulfanes and Sulfonium Salts The preparation of the μ-sulfurdisulfonium salts [(CH3)2S? Sx? S(CH3)2]2+(A?)2 with x = 1–3 and A? = AsF6?, SbF6?, SbCl6? is reported. The salts are formed by reaction of (CH3)2SH+A? and (CH3)2SSH+A? with SCl2 and S2Cl2, resp. They are characterized by vibrational spectroscopic measurements. [(CH3)2S? S2? S(CH3)2]2+(SbF6?)2 crystallizes in the space group C2/c with a = 1 884.5(7) pm, b = 1 302.8(5) pm, c = 1 477.2(5) pm, β = 98.62(3)° und Z = 8.  相似文献   

3.
Force Constants of Compounds of the Type (CH3)3ElCl+X?(El = N, P, As, Sb; X? = SbCl6?) For the cations (CH3)3NCl+ ( 1 ), (CH3)3PCl+ ( 2 ), (CH3)3AsCl+ ( 3 ), and (CH3)3SbCl+ ( 4 ) a normal coordinate analysis using a general valence force field is performed by the method of Fadini. The force constants are discussed. Calculations of the potential energy distribution show, that the skeletal vibrations in 4 are all characteristic vibrations, but there is a strong coupling of vibrations in 1 .  相似文献   

4.
Rh‐containing metallacycles, [(TPA)RhIII2‐(C,N)‐CH2CH2(NR)2‐]Cl; TPA=N,N,N,N‐tris(2‐pyridylmethyl)amine have been accessed through treatment of the RhI ethylene complex, [(TPA)Rh(η2CH2CH2)]Cl ([ 1 ]Cl) with substituted diazenes. We show this methodology to be tolerant of electron‐deficient azo compounds including azo diesters (RCO2N?NCO2R; R=Et [ 3 ]Cl, R=iPr [ 4 ]Cl, R=tBu [ 5 ]Cl, and R=Bn [ 6 ]Cl) and a cyclic azo diamide: 4‐phenyl‐1,2,4‐triazole‐3,5‐dione (PTAD), [ 7 ]Cl. The latter complex features two ortho‐fused ring systems and constitutes the first 3‐rhoda‐1,2‐diazabicyclo[3.3.0]octane. Preliminary evidence suggests that these complexes result from N–N coordination followed by insertion of ethylene into a [Rh]?N bond. In terms of reactivity, [ 3 ]Cl and [ 4 ]Cl successfully undergo ring‐opening using p‐toluenesulfonic acid, affording the Rh chlorides, [(TPA)RhIII(Cl)(κ1‐(C)‐CH2CH2(NCO2R)(NHCO2R)]OTs; [ 13 ]OTs and [ 14 ]OTs. Deprotection of [ 5 ]Cl using trifluoroacetic acid was also found to give an ethyl substituted, end‐on coordinated diazene [(TPA)RhIII2‐(C,N)‐CH2CH2(NH)2‐]+ [ 16 ]Cl, a hitherto unreported motif. Treatment of [ 16 ]Cl with acetyl chloride resulted in the bisacetylated adduct [(TPA)RhIII2‐(C,N)‐CH2CH2(NAc)2‐]+, [ 17 ]Cl. Treatment of [ 1 ]Cl with AcN?NAc did not give the Rh?N insertion product, but instead the N,O‐chelated complex [(TPA)RhI ( κ2‐(O,N)‐CH3(CO)(NH)(N?C(CH3)(OCH?CH2))]Cl [ 23 ]Cl, presumably through insertion of ethylene into a [Rh]?O bond.  相似文献   

5.
Preparation of Tetramethylammonium Azidosulfite and Tetramethylammonium Cyanate Sulfur Dioxide‐Adduct, [(CH3)4N]+[SO2N3], [(CH3)4N]+[SO2OCN] and Crystal Structure of [(CH3)4N]+[SO2N3] Tetramethylammonium azide forms with sulfur dioxide an azidosulfite salt. It is characterized by NMR and vibrational spectroscopy and the crystal structure analysis. [(CH3)4N]+[SO2N3] crystallizes in the monoclinic space group P21/c with a = 551.3(1) pm, b = 1095.2(1) pm, c = 1465.0(1) pm, β = 100.63(1)°, and four formula units in the unit cell. The crystal structure possesses a strong S–N interaction between the N3– anions and the SO2 molecules. The S–N distance of 200.5(2) pm is longer than a covalent single S–N bond. The structure is compared with ab initio calculated data. Furthermore an adduct of tetrametylammonium cyanate and sulfur dioxide is reported. It is characterised by NMR and vibrational spectroscopy. The structure is calculated by ab initio methods.  相似文献   

6.
Synthesis and Crystal Structure of the Ionic Tellurium Nitride Chloride[Te3N2Cl5(SbCl5)]+SbCl6? The title compound has been prepared by the reaction of Te2NCl5 with antimony pentachloride in CH2Cl2 suspension. It is characterized by IR spectroscopy and by a crystal structure determination. Space group P21/c, Z = 4, lattice dimensions at ?70°C: a = 1535.6, b = 1259.5, c = 1572.4 pm, β = 109.30°, R = 0.031. The compound forms an ionic pair with the central group of a (TeNCl)2 molecule in which the tellurium atoms are linked by the nitrogen atoms to give a planar Te2N2 four-membered ring. One of the nitrogen atoms is coordinated by a TeCl3+ unit, the other one by an antimony pentachloride molecule. According to the IR spectra a structure like [Te2N2Cl2(TeCl4)2] is proposed for Te2NCl5.  相似文献   

7.
A study of the strong N?X????O?N+ (X=I, Br) halogen bonding interactions reports 2×27 donor×acceptor complexes of N‐halosaccharins and pyridine N‐oxides (PyNO). DFT calculations were used to investigate the X???O halogen bond (XB) interaction energies in 54 complexes. A simplified computationally fast electrostatic model was developed for predicting the X???O XBs. The XB interaction energies vary from ?47.5 to ?120.3 kJ mol?1; the strongest N?I????O?N+ XBs approaching those of 3‐center‐4‐electron [N?I?N]+ halogen‐bonded systems (ca. 160 kJ mol?1). 1H NMR association constants (KXB) determined in CDCl3 and [D6]acetone vary from 2.0×100 to >108 m ?1 and correlate well with the calculated donor×acceptor complexation enthalpies found between ?38.4 and ?77.5 kJ mol?1. In X‐ray crystal structures, the N‐iodosaccharin‐PyNO complexes manifest short interaction ratios (RXB) between 0.65–0.67 for the N?I????O?N+ halogen bond.  相似文献   

8.
Preparation and Electrochemistry of [Nb(OTeF5)6]? and [Ta(OTeF5)6]? Complexes Nb(OTeF5)5 and Ta(OTeF5)5 react with Cs[OTeF5], [Et4N][OTeF5], and [(n-Bu)4N][OTeF5] to the corresponding Cs[M(OTeF5)6], [Et4N][M(OTeF5)6], and [(n-Bu)4N][M(OTeF5)6] complexes, (M = Nb, Ta). The electrochemical reduction of the niobium complex occurs in CH2Cl2 at ?0,69 V and in acetonitrile at ?0,60 V (vs. SCE). The tantalum complex is reduced in CH2Cl2 at ?1,52 V and in acetonitrile at ?1,42 V (vs. SCE).  相似文献   

9.
Crystal Structure of the SF5?-Anion The carbanion SF5? C(CF3)2? decomposes slowly forming SF5?, and (CF3)2C?C(CF3)2. The pentafluorosulfates(IV) grow in large crystals which are stable for prolonged times in presence of a SF4 vapour pressure. Crystal structure analysis of Rb+SF5? (Pbnm, a = 776.1(14), b = 990.3(5), c = 614.1(3) pm, Z = 4) revealed the SF5? anion in the expected square pyramidal structure. The axial bond is 15.9 pm shorter than the average equatorial bonds. The sulfur atom is located below the equatorial fluorine atoms. Pure Cs+SF5?-crystals seem to be notoriously twinned. Accidentally we isolated a double salt (Cs+)6(SF5?)4 (HF2?)2 (P4 b2, a = 1031.7(15), c = 627.6(9) pm, Z = 1). Herein the anion SF5? has the same structure as in Rb+SF5?.  相似文献   

10.
The mechanism of the pyrolysis reaction of carpronium chloride [(CH3)3N+? (CH2)3? COOCH3CI?] leading to γ-butyrolactone and tetramethylammonium chloride was investigated by means of thermal analysis, pyrolysis gas chromatography mass spectrometry and field desorption mass spectrometry, using deuterium labelling. The results indicated that carpronium chloride pyrolysed to yield equimolar amounts of γ-butyrolactone and tetramethylammonium chloride, methyl transfer occurred between N and O during the pyrolysis process. The mechanism is discussed on the basis of the experimental results, and with the aid of the theoretical results calculated by the CNDO/2 method. The mechanism presented is as follows. γ-Butyrolactone is formed by the intramolecular migration of the π-orbital of C?O to the carbon adjacent to [(CH3)3N]+ via a 5-membered ring transition state, accompanied by a bimolecular reaction between [(CH3)3N]+ and the CH3 of O? CH3, resulting in the formation of tetramethylammonium chloride in an amount equimolar with γ-butyrolactone.  相似文献   

11.
Preparation of Trifluormethylhalogen Iodate(I) Salts (CH3)4N+CF3IX? (X = F, Cl, Br) and Trifluormethyltrifluormethoxy Iodate(I) (CH3)4N+CF3IOCF3? We describe the preparation of new trifluormethyliodate(I) salts CF3IX? (X = F, Cl, Br, OCF3). (CH3)4N+CF3ICl? and (CH3)4N+CF3IBr? are obtained via addition of CF3I with the corresponded tetramethylammonium halogenide. (CH3)4N+CF3IOCF3? is synthesized by comproportionation of (CH3)4N+CF3ICl? with CF3OCl under formation of Cl2 at ?78°C. (CH3)4N+CF3IF? is formed either, through thermolysis of (CH3)4N+ CF3IOCF3? under separation of COF2, or reaction of CF3I with (CH3)4N+ OCF3?. The thermolabile compounds have been characterized by i.r., Raman, 19F-, 13C NMR spectroscopy.  相似文献   

12.
The [((C6H5)3P)2N]+, [(C6H5)4P]+ and [N(CH3)4]+ salts of SeF5, SeF62− and SeOF3 and CsSeO2F were prepared and characterized. Crystal structures were obtained for [((C6H5)3P)2N][SeF5] and [((C6H5)3P)2N][SeOF3] CH2Cl2. In contrast to oxygen-bridged dimeric TeOF3, the SeOF3 anion in [((C6H5)3P)2N][SeOF3] CH2Cl2 is monomeric and represents the first experimentally well determined molecular structure of a monomeric trifluoro-chalcogenite anion. Similarly, [((C6H5)3P)2N][SeF5] represents the first example of a structure containing a well-isolated undistorted SeF5 anion. The NMR and the vibrational spectra and their assignments were re-examined and corrected by comparison with high-level theoretical calculations. Whereas the previously published normal coordinate analysis of SeF5 is correct, that for SeOF3 needs major revision.  相似文献   

13.
In the title compound, [(CH3)2(C7H7)NH][(C6F5)3B(OH)] or C9H14N+·C18HBF15O?, the distorted tetrahedral borate anions are strongly hydrogen bonded to the substituted ammonium cations. The N?O separation in the N—H?O hydrogen bond is 2.728 (3) Å.  相似文献   

14.
Nitrido-Azido-Complexes of Molybdenum(VI). Synthesis and Crystal Structure of [MoN(N3)2(terpy)]+[MoN(N3)4] ? · MoN(N3)3(terpy) (CH3)3SiN3 reacts with Mo(CO)3(terpy) in CH3CN yielding red crystals of [MoN(N3)2(terpy)]+[MoN(N3)4] ?· MoN(N3)3(terpy) (space group P1 , a = 1039.3 pm, b = 1384.6 pm, c = 1685.4 pm, α = 112.4°, β = 108.1°, γ = 88.3°, Z = 2, R = 0.035 for 4376 independent reflections). The structure consists of three different mononuclear complexes. In the neutral complex MoN(N3)3(terpy) Mo exhibits the coordination number 7 in form of a distorted pentagonal bipyramid, with the terpyridine ligand and two azido groups in the equatorial plane. The axial positions are occupied by the nitrido ligand and another azido group. The triply bonded nitrido nitrogen atom (Mo1? N1 = 165.6 pm) causes a strong trans effect resulting in a long distance of 245.7 pm to Nα of the trans bonded azido group. The cationic complex [MoN(N3)2(terpy)]+ derives from MoN(N3)3-(terpy) by abstraction of the trans bonded azido group. For the molybdenum atom remains the coordination number 6 in form of the rarely found pentagonal pyramid. In the anion [MoN(N3)4]? the molybdenum atom exhibits the coordination number 5 in form of a tetragonal pyramid with the nitrido ligand in the apex. The square basic plane is formed by the Nα atoms of the azido groups.  相似文献   

15.
Preparation of Dimethyl(mercapto)sulfonium-hexachloroantimonate [(CH3)2SSH]+SbCl6? The preparation of [(CH3)2SSH]+SbCl6? from [(Ch3)2SCl]+SbCl6? and H2S at 223 K is reported. This salt is stable below 243 K and is characterized by vibrational spectroscopy.  相似文献   

16.
A series of novel molybdenum(V) and tungsten(VI) oxoazides was prepared starting from [MOF4] (M=Mo, W) and Me3SiN3. While [WO(N3)4] was formed through fluoride–azide exchange in the reaction of Me3SiN3 with WOF4 in SO2 solution, the reaction with MoOF4 resulted in a reduction of MoVI to MoV and formation of [MoO(N3)3]. Carried out in acetonitrile solution, these reactions resulted in the isolation of the corresponding adducts [MoO(N3)3?2 CH3CN] and [WO(N3)4?CH3CN]. Subsequent reactions of [MoO(N3)3] with 2,2′‐bipyridine and [PPh4][N3] resulted in the formation and isolation of [(bipy)MoO(N3)3] and [PPh4]2[MoO(N3)5], respectively. Most molybdenum(V) and tungsten(VI) oxoazides were fully characterized by their vibrational spectra, impact, friction and thermal sensitivity data and, in the case of [WO(N3)4?CH3CN], [(bipy)MoO(N3)3], and [PPh4]2[MoO(N3)5], by their X‐ray crystal structures.  相似文献   

17.
Two [N???I+???N] halogen‐bonded dimeric capsules using tetrakis(3‐pyridyl)ethylene cavitands with different lower rim alkyl chains are synthesized and analyzed in solution and the gas phase. These first examples of symmetrical dimeric capsules making use of the iodonium ion (I+) as the main connecting module are characterized by 1H NMR spectroscopy, diffusion ordered NMR spectroscopy (DOSY), electrospray ionization mass spectrometry (ESI‐MS), and ion mobility‐mass spectrometry (TW‐IMS) experiments. The synthesis and effective halogen‐bonded dimerization proceeds through analogous dimeric capsules with [N???Ag+???N] binding motifs as the intermediates as evidenced by the X‐ray structures of (CH2Cl2)2@[ 3 a 2?Ag4?(H2O)2?OTs4] and (CH2Cl2)2@[ 3 a 2?Ag4?(H2O)4?OTs4], two structurally different capsules.  相似文献   

18.
Heterobimetallic Complexes of Lithium, Aluminum, and Gold with the N ‐[2‐ N ′, N ′‐(dimethylaminoethyl)‐ N ‐methyl‐aminoethyl]‐ferrocenyl Ligand (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2} N‐[2‐N′,N′‐(dimethylaminoethyl)‐N‐methyl‐aminoethyl]ferrocene FcN,NH ( 1 ) reacts with nBuLi under formation of the lithium organyl (FcN,N)Li ( 2 ). At reactions of 2 with AlBr3 and AuCl · PPh3 the heterobimetallic organo derivatives (FcN,N)AlBr2 ( 3 ), (FcN,N)Au · PPh3 ( 4 ) are formed. A detailed characterization of 2 – 4 was carried out by single crystal x‐ray analyses as well as by NMR and Mößbauer spectroscopy.  相似文献   

19.
In the crystal structure of [(n-C4H9)4N]+·[NH2(C2N2S)NHCOO?]·NH2CSNC(NH2)2 (1), guanylthiourea molecules and 1,3,5-thiadiazole-5-amido-2-carbamate ions are joined together by intermolecular N–H…O, N–H…N, and weak N–H…S hydrogen bonds to generate stacked host layers corresponding to the (110) family of planes, between which the tetra-n-butylammonium guest cations are orderly arranged in a sandwich-like manner. In the crystal structure of [(n-C3H7)4N]+·[NH2(C2N2S)NHCOO?]·NH2CSNC(NH2)2·H2O (2), the tetrapropyl ammonium cations are stacked within channels each composed of hydrogen bonded ribbons of guanylthiourea molecules, 1,3,5-thiadiazole-5-amido-2-carbamate ions and water molecules.  相似文献   

20.
Crystal Structures of SeCl3+SbCl6?, SeBr3+GaBr4?, PCl4+SeCl5?, and (PPh4+)2SeCl42? · 2 CH3CN The crystal structures of the title compounds were determined by X-ray diffraction. SeCl3+SbCl6?: Space group P21/m, Z = 4, structure determination with 1795 observed unique reflections, R = 0.022. Lattice dimensions at ?80°C: a = 940.9, b = 1066.3, c = 1234.9 pm, β = 102.79°. The compound forms ion pairs with the structure of a double octahedron with linked surfaces. SeBr3+GaBr4?: Space group Pc, Z = 2, structure determination with 1461 observed unique reflections, R = 0.058. Lattice dimensions at ?60°C: a = 660.1, b = 655.3, c = 1431.3 pm, β = 101.177°. The compound crystallizes in the SCl3[AlCl4] lattice type. Between the ions there are two relatively short Se … Br? Ga contacts. PCl4+SeCl5?: Space group Ima2, Z = 8, structure determination with 1757 observed unique reflections, R = 0.029. Lattice dimensions at ?50°C: a = 1651.6, b = 1201.2, c = 1166.4 pm. The SeCl5? ions are associated to chains via interionic Se? Cl … Se contacts along the crystallographic c-axis. (PPh4+)2SeCl42? · 2CH3CN: Space group P21/n, Z = 2, structure determination with 2578 observed unique reflections, R = 0.050. Lattice dimensions at ?80°C: a = 1288.5, b = 726.0, c = 2585.8 pm, β = 101.65°. The compound includes planar-tetragonal SeCl42? ions, which almost meet D4h symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号