首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Metallothermic Reduction of the Tribromide and -iodide of Dysprosium with Alkali Metals Metallothermic reduction (900–1000°C, 2–3 d, tantalum capsules) of DyX3 (X = Br, I) with alkali metals (A = Li? Cs) results in the case of lithium and sodium (except for the system DyBr3/Li) in the formation of the dihalides DyX2 (DyI2 with the CdCl2-type, DyBr2 with the SrI2-type of structure). The reduction of DyI3 with potassium leads to K1.71DyI4 which crystallizes hexagonally with a = 1 446.7(2) pm and c = 473.3(1) pm, space group P6 2m (Z = 3). In K1.71DyI4, [DyI6]-octahedra are edge-connected forming chains along [001] that are linked via K+. With A = K, Rb, Cs, variants of the perovskite-type of structure with the composition ADyX3 are obtained. They crystallize with the tetragonal NaNbO3-II-type (CsDyBr3) or with the orthorhombic GdFeO3-type of structure (KDyBr3, RbDyX3, CsDyI3).  相似文献   

2.
Metallothermic Reduction of the Tribromide and -iodide of Neodymium with Alkali Metals Metallothermic reduction (700–800°C, 2–3d, tantalum capsules) of NdX3 (X = Br, I) with an equimolar amount of alkali metal (A = Li? Rb) results in the case of lithium and sodium (except for the system Li/NdBr3) in the formation of the dihalides NdX2 (NdBr2 with the PbCl2-type, NdI2 with the SrBr2-type of structure). With A = K and Rb, KNd2Br5, RbNd2Br5, RbNd2I5 and “K8Nd7I25” are obtained. The first three crystallize with the monoclinic TlPb2Cl5-type (space group P21/c), the latter with the orthorhombic K2PrCl5-type of structure (space group Pnma) containing both Nd3+ and Nd2+.  相似文献   

3.
Ternary Bromides and Iodides of Divalent Lanthanides and Their Alkaline-Earth Analoga of the Type AMX3 and AM2X5 Metallothermic reduction of the tribromides and -iodides MX3 (M = Sm, Dy, Tm, Yb) with alkali metals as well as with indium and thallium (A = Cs, Rb, K, In, Tl) results in most cases in ternary compounds with the composition AMX3 and AM2X5, respectively. Analogous compounds with M = Ba, Sr, Ca were synthesized from the binary components. The AMX3 compounds crystallize with the following types of structure: the perovskite-type and its distorted variants, the NaNbO3-II- and the GdFeO3-type, the NH4CdCl3- and the stuffed PuBr3-type. These structure types differ by a gain of condensation of the [MX6] octahedra (three-dimensional connection via corners within the variants of the perovskite-type, double chains of edge- and face-connected octahedra within the NH4CdCl3-type, and layers of corner- and edge-connected octahedra within the stuffed PuBr3-type of structure). This comes along with a reduction of the coordination number of A+ from 12 (“ideal” perovskite) to 8 + 2 (GdFeO3-type), 9 (NH4CdCl3-type), and 8 (stuffed PuBr3-type). Thus, the A/[MX6] size ratio determines which AMX3 type of structure is adopted. If the M2+ ion is large enough, ternary compounds with the composition AM2X5 occur either in addition to the AMX3 compounds or exclusively. They crystallize with the TlPb2Cl5 type of structure (C.N.(M2+) = 7 and 8). All of the AMX3 and AM2X5 compounds are summarized in a structure field diagram.  相似文献   

4.
Ternary Chlorides in the Systems ACl/DyCl3 (A = Cs, Rb, K) The phase diagrams of the pseudobinary systems ACl/DyCl3 (A = Cs, Rb, K) were investigated by DTA. With all alkali metals compounds A3DyCl6 (elpasolite family) and Ady2Cl7 are formed. Compounds A2DyCl5 exist only with Cs (Cs2DyCl5-type) and K (K2PrCl5-type). By solution calorimetry the formation enthalpies of the ternary chlorides from (nACl + DyCl3) were measured and ‘synproportionation enthalpies’ for the formation from the compounds, adjacent in the phase diagrams, calculated. K3DyCl6 is the only compound, which is formed with a loss in lattice enthalpy. E.m.f. measurements in dependence on the temperature have revealed that, as for the other compounds A3DyCl6, a remarkable gain in entropy exists, which stabilizes K3DyCl6 at T ≧ 312 K. This entropy gain correlates with the existence of isolated DyCl63? octahedra.  相似文献   

5.
Preparation and Crystal Structure of K4[SnO3] K4[SnO3] crystallizes with the K4[PbO3] structure in the orthorhombic spacegroup Pbca (No. 61) with the lattice constants a = 652.2(3) pm, b = 1 112.1(5) pm and c = 1 893.7(7) pm. In the structure isolated ψ-tetrahedral anions [SnIIO3]4? are arranged in layers perpendicular [001]. The structure of K4[SnO3] will be compared with those of stannates and plumbates of composition A4[MIIO3] (A = Na, K, Rb, Cs) and with the known potassium stannates(II).  相似文献   

6.
Novel Compounds between Potassium and Caesium The hitherto unknown compounds K2Cs und K7Cs6 exist at temperatures below ?90°C. Phase relationships and kinetic aspects of phase formation are investigated by thermal analyses and x-ray work with poly- and single-crystalline samples. K2Cs is isotypic with the hexagonal LAVES phase Na2K (MgZn2 type of structure; a0 = 9.065, c0 = 14.755 Å at ?95°C due to modified GUINIER -diagrams). K7Cs6 forms hexagonal crystals with a novel kind of FRANK -KASPER structure (single crystals grown at ?100°C; space group P63/mmc; a0 = 9.078; c0 = 32.950 Å at ?95°C). Structure relationships of K7Cs6 and μ-phases are analogues to those of the LAVES phases MgZn2 and MgCu2. The interatomic distances in all of the LAVES phases Na2K, K2Cs and Na2Cs are characterized by the identical expression d = Z(2rA + rB).  相似文献   

7.
Preparation and Characterization of Tetrabomoferrates(III) AFeBr4 with Monovalent Cations A ? Cs, Rb, Tl, NH4, K, Na, Li, Ag Tetrabromoferrates(III) AFeBr4 of the monovalent cations A ? Cs, Rb, Tl, NH4, Na, Ag, Li have been prepared in closed ampoules by reaction of the appropriate bromides with iron and an excessive amount of bromine. The dark red compounds were characterized by DTA, Raman spectroscopy and X-ray powder diffraction. Their crystal structures have been assigned to five structure types, containing FeBr4 anions. The coordination number runs from 12 (Cs+, Rb+) over 10 (NH4+) and 8 (K+), to 6 (Na+, Ag+, Li+). Lattice parameters for all compounds see “Inhaltsübersicht”. CsFeBr4 and RbFeBr4 crystallize orthorhombic in the BaSO4-type, NH4FeBr4 monoclinic in the KAlBr4-type, KFeBr4 orthorhombic in the GaGaCl4-type, NaFeBr4 monoclinic in the NaGaBr4-type, AgFeBr4 and LiFeBr4 monoclinic in the LiAlCl4-type, while the structure of TlFeBr4 is still unknown.  相似文献   

8.
X-Ray Single Crystal Structure Determinations of the Potassium Copper(II) Fluorides K2CuF4 and K3Cu2F7 With single crystals of the tetragonal compounds K2CuF4 (a = 414.7(2), c = 1273(3) pm) and K3Cu2F7 (a = 415.6(3), c = 2052(3) pm), showing no superstructure reflections, crystal structure determinations were based on space group I4/mmm of the K2NiF4 and Sr3Ti2O7 type, resp. The shape of F0-Fourier maxima at the positions of linking fluorine atoms within the layers of octahedra suggested disorder of bridging ligands caused by multidomain structure, which could be refined assuming half occupation of higherfold positions. The results confirmed the Jahn-Teller-distortions of octahedra being elongated with a significant orthorhombic component: Cu? F = 190.9(7)/193.9(2)/223.8(7) pm in K2CuF4 (RW = 0.020) and 190.0(7)/194.7/225.6(7) pm in K3Cu2F7 (RW = 0.023). In the acentric octahedra of the latter compound the intermediate distance is averaged from the splitted lengths 192.7(4)/196.8(1) pm of axes along the c direction.  相似文献   

9.
The Cryolite Structure of Na3ScF6 and the Tilting of Octahedra in Isostructural Sodium Hexafluorometallates Na3MF6 X-ray studies at single crystals of Na3ScF6 confirmed the monoclinic cryolite type structure of this compound: a = 559.5, b = 580.2, c = 811.6 pm, β = 90.72°, Z = 2, space group P21/n; R1 = 0.021 for 512 symmetry independent reflections. The octahedra of [ScF6] (average Sc? F = 200.7 pm), as well as those of [NaF6] (Na1? F = 229.1 pm) linked to them, are titled by about 20° with respect to the axes of the perovskite-like pseudocell. This tilting of octahedra is discussed in comparison with other cryolites and with orthorhombic perovskites NaMF3; there results a correlation between tilt angle and tolerance factor t ? 0.88 of these compounds, the [NaF8] coordination of which invariably exhibits a constant mean value of Na2? F = 231.5 ± 1 pm for the four shortest distances.  相似文献   

10.
K3Er7S12 and Rb3Er7S12: Two Ternary Erbium(III) Sulfides with Channel Structures The isotypic ternary erbium(III) sulfides K3Er7S12 (a = 1185.38(9), b = 2461.5(2), c = 393.59(3) pm) and Rb3Er7S12 (a = 1203.51(9), b = 2483.0(2), c = 394.85(3) pm; both orthorhombic, Pnnm, Z = 2) are obtained by reacting erbium metal and sulfur with an excess of alkali chloride (KCl or RbCl, respectively) serving as flux and reagent within seven days at 900 °C. The rod—shaped, yellow, transparent single crystals distinguish themselves in their crystal structure by a framework of corner— and edge—linked [ErS6] octahedra (d(Er3+—S2—) = 265—285 pm), in which the alkali metal cations (K+ and Rb+, respectively; CN = 6 and 7 + 1) are inserted into channels running along [001]. Under consideration of the ionic radius quotients ri(A+)/ri(Ch2—) (A = K—Cs, Ch = S—Te) the existence range of this Cs3Y7Se12—type of structure is discussed.  相似文献   

11.
New Ternary Alkalimetalhydroxides, MLi2(OH)3with M ? K, Rb, Cs and a Cesiumdilithiumamide, CsLi2(NH2)3- Structural Relations to the BaNiO3-type and to LiOH The systems LiOH/MOH with M ? K, Rb, Cs have been investigated. Several synthetic routes were chosen. Phase analysis was done by x-ray methods. In addition to the binary hydroxides only one ternary compound was found in each of the corresponding systems. The reaction of Cs and Li metal with NH3 in high-pressure autoclaves leads to CsLi2(NH2)3 and further ternary amides. X-ray structure determinations of the four compounds were performed. The isotypic hydroxides crystallize in the space group P21/m with two formula units in the unit cell. CsLi2(NH2)3shows orthorhombic symmetry (Cmcm, Z = 4) and its structure is closely related to that of the hydroxides. (For lattice parameters see ?Inhaltsübersicht”?). The atomic arrangements for the hydroxides and for tho amide can be dorived from the BaNiO3-type of structure as well as from that of LiOH. The structural influence of the charge asymmetry of the anions is discussed.  相似文献   

12.
The structure of two new oxides KCuTa3O9 and KCuNb3O9 has been solved from X-ray powder data and by electron microscopy. Both compounds are orthorhombic, space group Pnc2 with a ? 8.8 Å, b ? 10.1 Å, and c ? 7.6 Å. Their host lattice is built up from corner-sharing MO6 octahedra (M = Nb, Ta) forming pentagonal tunnels where the K+ ions are located. The copper ions are located in distorted perovskite CaCu3Mn4O12-type cages and exhibit a square planar coordination. The relationships between these oxides and the TTB, HTB, ITB, and Ba0.15WO3 structures are discussed.  相似文献   

13.
Preparation and Crystal Structure of (NH4)2[V(NH3)Cl5]. The Crystal Chemistry of the Compounds (NH4)2[V(NH3)Cl5], [Rh(NH3)5Cl]Cl2, and M2VXCl5 with M = K, NH4, Rb, Cs and X ? Cl, O (NH4)2[V(NH3)Cl5] crystallizes like [Rh(NH3)5Cl]Cl2 in the orthorhombic space group Pnma with Z = 4. The compounds are built up by isolated NH4+ or Cl? and complex MX5Y ions. The following distances have been observed: V? N: 213.8, V? Cl: 235.8–239.1, Rh? N: 207.1–208.5, Rh? Cl: 235.5 pm. Both structures differ from the K2PtCl6 type mainly in the ordering of the MX5Y polyhedra. The compounds M2VCl6 and M2VOCl5 with M = K, NH4, Rb, and Cs crystallize with exception of the orthorhombic K2VOCl5 in the K2PtCl6 type. The ordering of the MX5Y polyhedra in the compounds (NH4)2[V(NH3)Cl5], [Rh(NH3)5Cl]Cl2 and K2VOCl5 enables a closer packing.  相似文献   

14.
The Antimonide Triantimonidometallates(III) Cs6K3Sb[AlSb3] and Cs6K3Sb[GaSb3] The novel compounds Cs6K3Sb[AlSb3] and Cs6K3Sb[GaSb3] are formed from stoichiometric mixtures of Cs, AlSb (GaSb) and KSb in sealed niobium ampoules at 950 K. The hexagonal structures are especially characterized by one-dimensional rod packings 1∞[Cs6K3Sb] which are formed from columns of condensed (Cs6K6/2) icosahedra. The icosahedra are centered by Sb3-? anions. The trigonal planar anions [AlSb3]6-? and [GaSb3]6-? are embedded between the icosahedra columns, and they are coordinated by alkali metal atoms. The FIR spectra were assigned to the vibrations of the [MSb3]6-? anions, with respect to the 6 m2-D3h symmetry. (P63/mmc, No. 194; a = 1101.7 and 1097.2 pm; c = 1158.9 and 1150.1 pm; Z = 2; Single crystal data: 574 and 546 reflections; R = 0.073 and 0.029. Distances:d(Al? Sb) = 265.4 pm; d(Ga? Sb) = 265.1 pm; d(Sb? Cs) = 401.6–423.0 pm; d(Sb? K) = 358.6–367.3 pm).  相似文献   

15.
The reaction of K2S5, Cu, Gd, and S in a 2 : 1 : 2 : 4 molar ratio at 450 °C yields yellow-orange needle-like cuboids of the new quaternary compound KCuGd2S4. The crystal structure represents a novel three-dimensional structure type of quaternary rare earth chalcogenides with alkali metal. The compound crystallizes in the orthorhombic space group Cmcm (No. 63) with a = 3.9921(1) Å, b = 13.523(3) Å, c = 13.802(3) Å, V = 745.1(3) Å3, Z = 4. In the structure GdS6 octahedra and CuS4 tetrahedra are joined by common edges and corners forming corrugated layers parallel to (010). The GdS6 octahedra are connected via common edges in the third dimension thus leading to the formation of a three-dimensional tunnel structure. The potassium cations are confined within the pentagonal shaped channels and are surrounded by eight sulfide anions each.  相似文献   

16.
The phase transitions in Sr2SnO4 at high temperature have been studied using high resolution time-of-flight powder neutron diffraction. The room temperature structure of Sr2SnO4 is orthorhombic (Pccn), which can be derived from the tetragonal K2NiF4 structure by tilting the SnO6 octahedra along the tetragonal [100]T- and [010]T-axes with non-equal tilts. At the temperature of about 423 K, it transforms to another orthorhombic structure (Bmab) characterized by the SnO6 octahedral tilt around the [110]T-axis. At still higher temperatures (∼573 K) the structure was found to be tetragonal K2NiF4-type (I4/mmm).  相似文献   

17.
Ternary Halides of the A3MX6 Type I. A3YCI6 (A = K, NH4, Rb, Cs): Synthesis, Structures, Thermal Behaviour. Some Analogous Chlorides of the Lanthanides Reaction of the trichlorides MCl3 (M = Y, Tb? Lu) with alkali chlorides AC1 (A = K, Rb, Cs) in evacuated silica ampoules at 850?900°C yields A3MCl6-type chlorides. (NH4)3YCl6 is obtained via the ammonium-chloride route. The crystal structure of Rb3YCl6 (monoclinic, C2/c (no. 15), Z = 8, a = 2583(1)pm, b = 788.9(4)pm, c = 1283.9(7)pm, p = 99.63(4)°, R = 0.062, Rw = 0.050) is that of Cs3BiCl6. The Rb3YCl6/Cs3BiCl6 structure and the closely related structures of K3MoCl6 and In2CI3 are derived from the elpasolite-type of structure (K2NaAlF6) making use of the model of closest-packed layer structures. Cell parameters for the chlorides Rb3MCl6 (M = Y, Tb? Lu) and Cs3YCl6 and Cs3ErCl6 as well, which are all isostructural with Rb3YCl6, are given. The “system” (K, NH4, Rb, Cs)YCl6 has been investigated by DTA and high-temperature X-ray powder diffractometry.  相似文献   

18.
Synthesis and Crystal Structure of Cs3Y7Se12 The oxidation of yttrium metal with selenium in the presence of CsCl (7 d, 700°C, evacuated silicia tubes) results in the formation of pale yellow, lath-shaped single crystals of Cs3Y7Se12. The crystal structure (orthorhombic, Pnnm, Z = 2, a = 1272.8(3), b = 2627.7(5), c = 413.32(8) pm) consists of edge- and vertex-connected [YSe6] octahedra forming a rocksalt-related network [Y7Se12]3?. One-dimensional infinite channels along [001], apt to take up extra cations, provide coordination numbers of 6 and 7 + 1, respectively, for two crystallographically different Cs+.  相似文献   

19.
Jahn‐Teller Ordering in Manganese(III) Fluoride Sulfates. II. Phase Transition and Twinning of K2[MnF3(SO4)] and 1D Magnetism in Compounds A2[MnF3(SO4)] (A = K, NH4, Rb, Cs) According to single‐crystal X‐ray investigations, K2[MnF3(SO4)] crystallizes at low temperature, like the isostructural Rb, NH4, and Cs analogues in space group P21/c, Z = 4, e.g. at 100 K with a = 7.197, b = 10.704, c = 8.427Å, β = 91.84°. Below about 300 K, the crystals are found to be [001] axis twins. Using a new integration method for area detector records, nearly complete intensity data could be gained allowing for structure refinements of similar quality as for untwinned crystals (e.g. at 100 K: wR2 = 0.050, R = 0.020 for all reflections). With rising temperature, the monoclinic angle approaches continuously 90°. For an ordering parameter Δβ = β?90° a 2nd‐order phase transition is observed with an exponent λ = 0.17. At the transition temperature of 280 K resulting from the fit, the monoclinic structure changes – with delay – to orthorhombic with the minimum super‐group Pnca, a = 7.243, b = 10.763, c = 8.457Å, R = 0.024, as found in an early structure determination at room temperature by Edwards 1971. In the chain‐like [MnF3(SO4)]2? anions, manganese(III) is octahedrally coordinated by two trans‐terminal and two trans‐bridging fluorine ligands as well as by the O atoms of two trans‐bridging sulfate ligands. At low temperature, the octahedral elongation by the Jahn‐Teller effect alternates between a F–Mn–F and an O–Mn–O axis (antiferrodistortive ordering). All bridges are asymmetric. From about 320 K on they become symmetric. Due to 2D dynamical Jahn‐Teller effect all octahedra appear compressed. All compounds A2[MnF3(SO4)] show 1D antiferromagnetism. The antiferrodistortive Jahn‐Teller order at low temperatures and the small bridge angles explain the much lower magnetic exchange energies and their inverse relation to the bridge angles as compared with other fluoromanganate(III) chain compounds with the usual ferrodistortive ordering.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号