首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compared to the chemistry associated with the basic syntheses and structures of the metallaboranes, their reaction chemistry is relatively uninvestigated. To illustrate the potential variety of such reaction chemistry, a linked overview of some previously reported and previously unreported reactions of the nido-6-metalladecaboranes [(PPh3)2HIrB9H13], [(PPh3)(Ph2PC6H4)HIrB9H12], [(η6-C6Me6)RuB9H13], [(η6-MeC6H4isoPr)RuB9H13] and [(η5-C5Me5)RhB9H13] with acetylenes and isocyanides is presented, together with some related chemistry derived from the arachno-type 4-metallanonaboranes [(PMe2Ph)2PtB8H12] and [(PMe3)2(CO)HIrB8H12]. Reductions, oligomerisations, and reductive oligomerisations of the unsaturated species are observed, as well as complete or partial incorporation of carbon and nitrogen hetero atoms into the metallaborane clusters.1  相似文献   

2.
[(η5-C5R5)Fe(PMe3)2H] (R = H, Me) can be made in good yields in a simple one-pot reaction between FeCl2, PMe3, C5R5H (R = H, Me) and Na/Hg in thf. Reaction of [(η5-C5H5)Fe(PMe3)2H] with pentaborane(9) gives the known metallaborane [(η5-C5H5)-nido-2-FeB5H10] (1) in improved yield as well as the new metallaboranes [(η-C5H5)-nido-2-FeB5H8{μ-5,6-Fe(η5-C5H5)(PMe3)(μ-6,7-H)}] (2), [(η-C5H5)(PMe3)-arachno-2-FeB3H8] (3), [(η5-C5H5)2-capped-nido-2,3-Fe2B4H8] (4), [(η5-C5H5)-nido-2-FeB4H7(PMe3)] (5) and [(η5-C5H5)-nido-2-FeB5H8(PMe3)] (6). Reaction of [(η5-C5Me5)Fe(PMe3)2H] with pentaborane(9) gives predominantly [(η5-C5Me5)-nido-2-FeB5H10] (7) and [(η5-C5Me5)(PMe3)-arachno-2-FeB3H8] (8). Reaction of [(η5-C5H5)Fe(PMe3)2H] with 2 equiv. of BH3 · thf gives low yields of ferrocene and compound 3. Compound 7 thermally isomerises to the apical isomer [(η5-C5H5)-nido-2-FeB5H10] (9) in low yield. Compounds 1 and 7 deprotonate cleanly in the presence of KH at the unique B-H-B bridge to give [(η5-C5H5)-nido-2-FeB5H9][K+] (10) and [(η5-C5Me5)-nido-2-FeB5H9][K+] (11) respectively, whilst 6 deprotonates more slowly at one of two equivalent B-H-B bridges to give the fluxional anion [(η5-C5H5)-nido-2-FeB5H7(PMe3)] (12).  相似文献   

3.
Electroreduction of the C6Me6isocloso‐ruthenaborane complex {(C6Me6)‐isocloso‐1‐RuB10H10} has been investigated using cyclic voltammetry, convolutive voltammetry, chronoamperometry and chronopotentiometry techniques at a glassy carbon electrode in 0.1 mol·L−1 tetrabutyl ammonium perchlorate dissolved in methylene chloride. The investigated complex has been reduced via the consumption of two sequential electrons leading to the formation of monoanion and dianion, respectively. The electrode reaction pathway and the electrochemical parameters of the investigated system were determined. The extracted electrochemical parameters were verified via digital simulation treatments. Diffusion coefficient and heterogeneous electron transfer kinetics of the {(C6Me6)‐isocloso‐1‐RuB10H10} complex at low temperature were studied and discussed.  相似文献   

4.
Abstract

The interaction of [Ru(η6-arene)(μ-Cl)Cl]2 and Ir(η5-C5Me5)(μ-Cl)Cl]2 with a new Ionic Liquid-based phosphinite ligand, [(Ph2PO)-C6H9N2Ph]Cl, (2) gave [Ru((Ph2PO)-C6H9N2Ph)(η6-p-cymene)Cl2]Cl (3), [Ru((Ph2PO)-C6H9N2Ph)(benzene)Cl2]Cl (4) and [Ir((Ph2PO)-C6H9N2Ph)(C5Me5)Cl2]Cl (5), complexes. All the compounds were characterized by a combination of multinuclear NMR and IR spectroscopy as well as elemental analysis. Furthermore, the Ru(II) and Ir(III) catalysts were applied to asymmetric transfer hydrogenation of acetophenone derivatives using 2-propanol as a hydrogen source. The results showed that the corresponding alcohols could be obtained with good activity (up to 55% ee and 99% conversion) under mild conditions. Notably, [Ir((Ph2PO)-C6H9N2Ph)(C5Me5)Cl2]Cl (5) is more active than the other analogous complexes in the transfer hydrogenation (up to 81% ee).  相似文献   

5.
The reaction of (η5-C9H2Me5)Rh(1,5-C8H12) (1) with I2 gives the iodide complex [(η5-C9H2Me5)RhI2]2 (2). The solvate complex [(η5- C9H2Me5)Rh(MeNO2)3]2+ (generated in situ by treatment of 2 with Ag+ in nitromethane) reacts with benzene and its derivatives giving the dicationic arene complexes [(η5-9H2Me5)Rh(arene)]2+ [arene = C6H6 (3a), C6Me6 (3b), C6H5OMe (3c)]. Similar reaction with the borole sandwich compound CpRh(η5-C4H4BPh) results in the arene-type complex [CpRh(μ-η56-C4H4BPh)Rh(η5-C9H2Me5)]2+ (4). Treatment of 2 with CpTl in acetonitrile affords cation [(η5-C9H2Me5)RhCp]+ (5). The structure of [3c](BF4)2 was determined by X-ray diffraction. The electrochemical behaviour of complexes prepared was studied. The rhodium-benzene bonding in series of the related complexes [(ring)Rh(C6H6)]2+ (ring = Cp, Cp, C9H7, C9H2Me5) was analyzed using energy and charge decomposition schemes.  相似文献   

6.
Complex Cp∗PtCl2 (Cp∗ = η-C4Me4) reacts with the carborane anions [7,8-C2B9H11]2− and [9-SMe2-7,8-C2B9H10] giving platinacarboranes Cp∗Pt(η-7,8-C2B9H11) (1) and [Cp∗Pt(η-9-SMe2-7,8-C2B9H10)]+ (2), respectively. Reactions of the [Cp∗Pt]2+ fragment (as a labile nitromethane solvate) with the sandwich compounds Cp∗Fe(η-C5H3Me2BMe) and Cp∗Rh(η5-C4H4BPh) afford the triple-decker cations [Cp∗Pt(μ-η:η-C5H3Me2BMe)FeCp∗]2+ (3) and [Cp∗Pt(μ-η55-C4H4BPh)RhCp∗]2+ (4) with bridging boratabenzene and borole ligands. The structures of 1 and 3(CF3SO3)2 were determined by X-ray diffraction.  相似文献   

7.
The mononuclear cationic complexes [(η6-C6H6)RuCl(L)]+ (1), [(η6-p-iPrC6H4Me)RuCl(L)]+ (2), [(η5-C5H5)Ru(PPh3)(L)]+ (3), [(η5-C5Me5)Ru(PPh3)(L)]+ (4), [(η5-C5Me5)RhCl(L)]+ (5), [(η5-C5Me5)IrCl(L)]+ (6) as well as the dinuclear dicationic complexes [{(η6-C6H6)RuCl}2(L)]2+ (7), [{(η6-p-iPrC6H4Me)RuCl}2(L)]2+ (8), [{(η5-C5H5)Ru(PPh3)}2(L)]2+ (9), [{(η5-C5Me5)Ru(PPh3)}2(L)]2+ (10), [{(η5-C5Me5)RhCl}2(L)]2+ (11) and [{(η5-C5Me5)IrCl}2(L)]2+ (12) have been synthesized from 4,4′-bis(2-pyridyl-4-thiazole) (L) and the corresponding complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-p-iPrC6H4Me)Ru(μ-Cl)Cl]2, [(η5-C5H5)Ru(PPh3)2Cl)], [(η5-C5Me5)Ru(PPh3)2Cl], [(η5-C5Me5)Rh(μ-Cl)Cl]2 and [(η5-C5Me5)Ir(μ-Cl)Cl]2, respectively. All complexes were isolated as hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV-vis spectroscopy. The X-ray crystal structure analyses of [3]PF6, [5]PF6, [8](PF6)2 and [12](PF6)2 reveal a typical piano-stool geometry around the metal centers with a five-membered metallo-cycle in which 4,4′-bis(2-pyridyl-4-thiazole) acts as a N,N′-chelating ligand.  相似文献   

8.
The mononuclear η5-cyclopentadienyl complexes [(η5-C5H5)Ru(PPh3)2Cl], [(η5-C5H5)Os(PPh3)2Br] and pentamethylcyclopentadienyl complex [(η5-C5Me5)Ru(PPh3)2Cl] react in the presence of 1 eq. of the tetradentate N,N′-chelating ligand 3,5-bis(2-pyridyl)pyrazole (bpp-H) and 1 eq. of NH4PF6 in methanol to afford the mononuclear complexes [(η5-C5H5)Ru(PPh3)(bpp-H)]PF6 ([1]PF6), [(η5-C5H5)Os(PPh3)(bpp-H)]PF6 ([2]PF6) and [(η5-C5Me5)Ru(PPh3)(bpp-H)]PF6 ([3]PF6), respectively. The dinuclear η5-pentamethylcyclopentadienyl complexes [(η5-C5Me5)Rh(μ-Cl)Cl]2 and [(η5-C5Me5)Ir(μ-Cl)Cl]2 as well as the dinuclear η6-arene ruthenium complexes [(η6-C6H6)Ru(μ-Cl)Cl]2 and [(η6-p-iPrC6H4Me)Ru(μ-Cl)Cl]2 react with 2 eq. of bpp-H in the presence of NH4PF6 or NH4BF4 to afford the corresponding mononuclear complexes [(η5-C5Me5)Rh(bpp-H)Cl]PF6 ([4]PF6), [(η5-C5Me5)Ir(bpp-H)Cl]PF6 ([5]PF6), [(η6-C6H6)Ru(bpp-H)Cl]BF4 ([6]BF4) and [(η6-p-iPrC6H4Me)Ru(bpp-H)Cl]BF4 ([7]BF4). However, in the presence of 1 eq. of bpp-H and NH4BF4 the reaction with the same η6-arene ruthenium complexes affords the dinuclear salts [(η6-C6H6)2Ru2(bpp)Cl2]BF4 ([8]BF4) and [(η6-p-iPrC6H4Me)2Ru2(bpp)Cl2]BF4 ([9]BF4), respectively. These compounds have been characterized by IR, NMR and mass spectrometry, as well as by elemental analysis. The molecular structures of [1]PF6, [5]PF6 and [8]BF4 have been established by single crystal X-ray diffraction studies and some representative complexes have been studied by UV–vis spectroscopy.  相似文献   

9.
The synthesis, electronic structure, and reactivity of a uranium metallacyclopropene were comprehensively studied. Addition of diphenylacetylene (PhC≡CPh) to the uranium phosphinidene metallocene [η5-1,2,4-(Me3C)3C5H2]2U=P-2,4,6-tBu3C6H2 ( 1 ) yields the stable uranium metallacyclopropene, [η5-1,2,4-(Me3C)3C5H2]2U[η2-C2Ph2] ( 2 ). Based on density functional theory (DFT) results the 5f orbital contributions to the bonding within the metallacyclopropene U-(η2-C=C) moiety increases significantly compared to the related ThIV compound [η5-1,2,4-(Me3C)3C5H2]2Th[η2-C2Ph2], which also results in more covalent bonds between the [η5-1,2,4-(Me3C)3C5H2]2U2+ and [η2-C2Ph2]2− fragments. Although the thorium and uranium complexes are structurally closely related, different reaction patterns are therefore observed. For example, 2 reacts as a masked synthon for the low-valent uranium(II) metallocene [η5-1,2,4-(Me3C)3C5H2]2UII when reacted with Ph2E2 (E=S, Se), alkynes and a variety of hetero-unsaturated molecules such as imines, ketazine, bipy, nitriles, organic azides, and azo derivatives. In contrast, five-membered metallaheterocycles are accessible when 2 is treated with isothiocyanate, aldehydes, and ketones.  相似文献   

10.
Compounds (η-C5R5)Fe[η-9-(Me2S)-7,8-C2B9H10] (R=H, Me) and (η-C4Me4)Co[η-9-(Me2S)-7,8-C2B9H10] were synthesized by the reactions of Na[9-(Me2S)-7,8-C2B9H10] with complexes [(η-C5H5)Fe(MeCN)3]PF6, [(η-C5Me5)Fe(MeCN)3]BF4, and [(η-C4Me4)Co(MeCN)3]PF6, respectively. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 177–179, January, 1999.  相似文献   

11.
The mononuclear cations [(η5-C5Me5)RhCl(bpym)]+ (1), [(η5-C5Me5)IrCl(bpym)]+ (2), [(η6-p-PriC6H4Me)RuCl(bpym)]+ (3) and [(η6-C6Me6)RuCl(bpym)]+ (4) as well as the dinuclear dications [{(η5-C5Me5)RhCl}2(bpym)]2+ (5), [{(η5-C5Me5)IrCl}2(bpym)]2+ (6), [{(η6-p-PriC6H4Me)RuCl}2(bpym)]2+ (7) and [{(η6-C6Me6)RuCl}2(bpym)]2+ (8) have been synthesised from 2,2′-bipyrimidine (bpym) and the corresponding chloro complexes [(η5-C5Me5)RhCl2]2, [(η5-C5Me5)IrCl2]2, [(η6-PriC6H4Me)RuCl2]2 and [(η6-C6Me6)RuCl2]2, respectively. The X-ray crystal structure analyses of [3][PF6], [5][PF6]2, [6][CF3SO3]2 and [7][PF6]2 reveal a typical piano-stool geometry around the metal centres; in the dinuclear complexes the chloro ligands attached to the two metal centres are found to be, with respect to each other, cis oriented for 5 and 6 but trans for 7. The electrochemical behaviour of 1-8 has been studied by voltammetric methods. In addition, the catalytic potential of 1-8 for transfer hydrogenation reactions in aqueous solution has been evaluated: All complexes catalyse the reaction of acetophenone with formic acid to give phenylethanol and carbon dioxide. For both the mononuclear and dinuclear series the best results were obtained (50 °C, pH 4) with rhodium complexes, giving turnover frequencies of 10.5 h−1 for 1 and 19 h−1 for 5.  相似文献   

12.
Single addition of the nucleophiles X (X = H, CN, OH) to the less sterically hindered ring in [(η6-C6Me6)Ru(η6-C16H16)][BF4]2 (1) proceeds smoothly to produce, as the sole product, [(exo5-C6Me6X)Ru(η6-C16H16)][BF4]. Use of Na[BD4] in place of Na[BH4] gives the expected shift in ν(C-Hexo) in the infrared spectrum.  相似文献   

13.
Heterobimetallic Phosphanido-bridged Dinuclear Complexes - Syntheses of cis-rac-[(η-C5H4R)2Zr{μ-PH(2,4,6-iPr3C6H2)}2M(CO)4] (R?Me, M?Cr, Mo; R?H, M?Mo) The zirconocene bisphosphanido complexes [(η-C5H4R)2Zr{PH(2,4,6-iPr3C6H2)}2] (R?Me, H) react with [(NBD)M(CO)4] (NBD?norbornadiene, M?Cr, Mo) to give only one diastereomer of the phosphanido-bridged heterobimetallic dinuclear complexes cis-rac-[(η-C5H4R)2Zr{μ-PH(2,4,6-iPr3C6H2)}2M(CO)4] [R?Me, M?Cr ( 1 ), Mo ( 2 ); R?H, M?Mo ( 3 )]. However, no reaction was observed between [(η-C5H5)2Zr{PH(2,4,6-tBu3 C6H2)}2] and [Pt(PPh3)4]. 1—3 were characterised spectroscopically. For 1—3 , the presence of the racemic isomer was shown by NMR spectroscopy. No reaction was observed at room temperature for 3 and CS2, (NO)BF4, Me3NO or PH(2,4,6-Me3C6H2)2. With Et2AlH or PhC?CH decomposition of 3 was observed.  相似文献   

14.
Heteroleptic rhodium(I) complexes with the general formulations [(η4-C8H12)Rh(L)] [η4-C8H12 = 1,5-cyclooctadiene; L = 5-(4-cyanophenyl)dipyrromethene, cydpm; 5-(4-nitrophenyl)dipyrromethene, ndpm; and 5-(4-benzyloxyphenyl)dipyrromethene, bdpm; 5-(4-pyridyl)dipyrromethene, 4-pyrdpm; 5-(3-pyridyl)dipyrromethene, 3-pyrdpm] have been synthesized. The complex [(η4-C8H12)Rh(4-pyrdpm)] have been used as a synthon in the construction of homo-bimetallic complex [(η4-C8H12)Rh(μ-4-pyrdpm)Rh(η5-C5Me5)Cl2] and hetero-bimetallic complexes [(η4-C8H12)Rh(μ-4-pyrdpm)Ir(η5-C5Me5)Cl2], [(η4-C8H12)Rh(μ-4-pyrdpm)Ru(η6-C10H14)Cl2] and [(η4-C8H12)Rh(μ-4-pyrdpm)Ru(η6-C6H6)Cl2]. Resulting complexes have been characterized by elemental analyses and spectral studies. Molecular structures of the representative mononuclear complexes [(η4-C8H12)Rh(ndpm)] and [(η4-C8H12)Rh(4-pyrdpm)] have been authenticated crystallographically.  相似文献   

15.
V(η-C6H3Me3-1,3,5)2I reacts with reducing agents such as MeLi, Na[AlH2(OCH2CH2OCH3)2] or Na to yield the neutral complex V(η-C6H3Me3-1,3,5)2 in 70–75% yield. Reaction of V(η-C6H3Me3-1,3,5)2I with compounds containing suitable donor atoms such as THF, P(OMe)3, CH3CN or Py yields V(η-C6H3Me3-1,3,5)2 in 40–45% yield via disproportionation. The complex V(η-C5H5)2I was isolated in low yield, together with V(η-C6H3Me3-1,3,5)2 from the reaction of V(η-C6H3Me3-1,3,5)2I with Cp2Mg in toluene. Reaction of V(η-C6H3Me31,3,5)2I or V(η-C6H3Me3-1,3,5)2 with allyl chloride leads to oxidation of the metal and loss of both mesitylene ligands.  相似文献   

16.
Elimination of methane during thermolysis of title compounds results in the formation of σ-Ti-C bond to t-butyl or benzyl group. The t-butyl-containing titanocene methyl compound [Ti(III)Me(η5-C5Me4t-Bu)2] (5) eliminates methane at 110 °C to give cleanly [Ti(III)(η51-C5Me4CMe2CH2)(η5-C5Me4t-Bu)] (6). The methyl derivative of analogous benzyl-containing titanocene [Ti(III)Me(η5-C5Me4CH2Ph)2] was not isolated because it eliminated methane at ambient temperature to give [Ti(III)(η51-C5Me4CH2-o-C6H4)(η5-C5Me4CH2Ph)] (7) with one phenyl ring linked to titanium atom in ortho-position. The corresponding titanocene dimethyl compound [TiMe25-C5Me4t-Bu)}2] (9) eliminates two methane molecules at 110 °C to give the singly tucked-in 1,1-dimethylethane-1,2-diyl-tethered titanocene [Ti{η511-C5Me3(CH2)(CMe2CH2)}(η5-C5Me4t-Bu)] (11). In distinction, the analogous benzyl derivative [TiMe25-C5Me4CH2Ph)2] (10) eliminates at 110 °C only one methane molecule to afford [TiMe(η51-C5Me4CH2-o-C6H4)(η5-C5Me4CH2Ph)] (12) containing one phenyl group attached to titanium in o-position and one methyl group persisting on the titanium atom. This compound is stable at 150 °C for at least 3 h. The crystal structures of 5, 6, 7, and 10 were determined.  相似文献   

17.
Metal Complexes of Biologically Important Ligands. XCV. η5-Pentamethylcyclopentadienyl Rhodium, Iridium, η6- Benzene Ruthenium, and Phosphine Palladium Complexes of Proline Methylester and Proline Amide Proline methylester (L1) and proline amide (L2) give with the chloro bridged complexes [(η5 -C5Me5)MCl2]2 (M ? Rh, Ir), [(η6 -benzene)RuCl2]2 and [Et3PPdCl2]2 N and N,O coordinated compounds: (η5 -C5Me5)M(Cl2)L1 ( 1, 2 M ? Rh, Ir), [(η5-C5Me5) Rh(Cl)(L2)]+Cl? ( 5 ), [(η6- C6Me6) Ru(Cl)(L2)]+Cl? ( 6 ), [(η6-p-cymene)Ru(Cl)(L2)]+Cl? ( 7 ), [(eta;5-C5Me5)M(Cl)(L2-H+)] ( 9, 10 M ? Rh, Ir), (Et3P)Pd(Cl)2L1 ( 3 ), and [(Et3P)Pd(Cl)(L2)]+Cl? ( 8 ). The NMR spectra indicate that for 5 and 6 only one diastereoisomer is formed. The complexes 1, 2, 3 and 5 were characterized by X-ray diffraction.  相似文献   

18.
1,2-Diphosphaferrocenes as Ligands in Transition Metal Complexes. X-Ray Structure Analysis of [(η5-1,3-tBu2C5H3){η5-1,2-[Co2(CO)6]-3,4-(Me3SiO)2-5-(Me3Si)P2C3}] Reaction of metallo-1,2-diphosphapropene (η5-tBuC5H4)(CO)2Fe? P(SiMe3)? P?C(SiMe3)2 with (Z-cyclooctene)Cr(CO)5 afforded the pentacarbonylchromium adduct of a 1,2-diphosphaferrocene [(η5-tBuC5C5H4){η5-1-[Cr(CO)5]-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 1 c ). Diphosphaferrocene [(η5-tBuC5H4){η5-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 2 c ) was formed when (η5-tBuC5H4)(CO)2FeBr was treated with (Me3Si)2P? P?C(SiMe3)2 in toluene at 60°C. Photolysis of molybdenum- and tungsten hexacarbonyl in the presence of [(η5-1,3-tBu2C5H3){η5-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 2 b ) gave the pentacarbonylmetal adducts 8 (M = Mo) and 9 (M = W), respectively. A corresponding manganese derivative resulted from the photochemical reaction of 2 b and (MeC5H4)Mn(CO)3. Treatment of 2 b with Co2(CO)8 yielded trinuclear [(η5-1,3-tBu2C5H3){η5-1,2-[Co2(CO)6]-3,4-(Me3SiO)2-5-(Me3Si)P2C3}Fe] ( 11 ). Constitution and configuration of compounds 1 c, 2 c, 8 – 11 were determined by elemental analyses and spectra (IR, 1H-, 13C-, 31P-NMR, MS). In addition the molecular structure of 11 was established by single crystal X-ray analysis.  相似文献   

19.
The reaction of [Mo(NCME)2(CO)25-C9H7)][BF4] (1) with 1-dimethylaminocyclohexa-1,3-diene affords the cationic η3-allyl complex [Mo(η3-C6H7NMe2)(CO)2- (η5-C9H7)][BF4] (3), in which the positive charge is located at an exocyclic iminium centre. Addition of Li[N(SiMe3)2] to 3 results in deprotonation and the formation of an enamine species [Mo(η3-C6H6NMe2)(CO)25-C9H7)] (8), which undergoes stereofacial attack upon treatment with electrophiles.  相似文献   

20.
Microcalorimetric measurements at elevated temperatures of the heats of thermal decomposition and iodination have led to values of the standard enthalpies of formation of the following crystalline compounds (values given in kJ mol?1) at 298K: [Cr(η6-1,3,5-C6H3(CH3)3)2] = (63±12); [Cr(η6-C6(CH3)6)2] : -(88±12); [Cr(1,2,3,4,4a,8a-η-C10H8)2] = (407±11); [Cr(CO)3(1,2,3,4,4a,8a-η-C10H8)] = -(258±8). Separate measurements by the vacuum sublimation microcalorimetric technique gave the following values for the enthalpy of sublimation at 298K (kJ mol?1) : [Cr(η6-1,3,5-C6H3(CH3)3)2] = (104±1); [Cr(η6-C6(CH3)6)2] = (119±4); [Cr(CO)3(1,2,3,4,4a,8a-η-C10H8)] = (107±3). From these and other data, the bond enthalpy contributions of the metal-ligand bonds in the gaseous metal complexes were evaluated as follows: [(η6-C6(CH3)6)-Cr] (155±7); [(η6-C6H3(CH3)3)-Cr] (151±6); [(1,2,3,4,4a, 8a-η-C10H8)-Cr](145±6) kJ mol?1]The question of the transferability of the enthalpy contributions of chromium—ligand bonds between organochronium complexes is discussed with aid of information from structural and spectroscopic investigation. The limitations of the procedure are defined.The thermodynamic data are used to discuss various substitution, redistribution and exchange reaction of Cr(η-arene)2 and [Cr(CO)3(η-arene)] compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号