首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
HIV-1 integrase (IN) is a retroviral enzyme that catalyses integration of the reverse-transcribed viral DNA into the host genome, which is necessary for efficient viral replication. In this study, we have performed an in silico virtual screening for the identification of potential HIV-1 IN strand transfer (ST) inhibitors. Pharmacophore modelling and atom-based 3D-QSAR studies were carried out for a series of compounds belonging to 3-Hydroxypyrimidine-2,4-diones. Based on the ligand-based pharmacophore model, we obtained a five-point pharmacophore with two hydrogen bond acceptors (A), one hydrogen bond donor (D), one hydrophobic group (H) and one aromatic ring (R) as pharmacophoric features. The pharmacophore hypothesis AADHR was used as a 3D query in a sequential virtual screening study to filter small molecule databases Maybridge, ChemBridge and Asinex. Hits matching with pharmacophore hypothesis AADHR were retrieved and passed progressively through Lipinski’s rule of five filtering, molecular docking and hierarchical clustering. The five compounds with best hits with novel and diverse chemotypes were subjected to QM/MM docking, which showed improved docking accuracy. We further performed molecular dynamics simulation and found three compounds that form stable interactions with key residues. These compounds could be used as a leads for further drug development and rational design of HIV-1 IN inhibitors.  相似文献   

2.
Type 2 diabetes mellitus (T2DM) is one of the most widely prevalent metabolic disorders with no cure to date thus remains the most challenging task in the current drug discovery. Therefore, the only strategy to control diabetes prevalence is to develop novel efficacious therapeutics. Dipeptidyl Peptidase 4 (DPP-4) inhibitors are currently used as anti-diabetic drugs for the inhibition of incretins. This study aims to construct the chemical feature based on pharmacophore models for dipeptidyl peptidase IV. The structure-based pharmacophore modeling has been employed to evaluate new inhibitors of DPP-4. A four-featured pharmacophore model was developed from crystal structure of DPP-4 enzyme with 4-(2-aminoethyl) benzenesulfonyl fluoride in its active site via pharmacophore constructing tool of Molecular Operating Environment (MOE) consisting F1 Hyd (hydrophobic region), F2 Hyd|Cat|Don (hydrophobic cationic and donor region), F3 Acc (acceptor region) and F4 Hyd (hydrophobic region). The generated pharmacophore model was used for virtual screening of in-house compound library (the available compounds which were used for initial screening to get the few compounds for the current studies). The resultant selected compounds, after virtual screening were further validated using in vitro assay. Furthermore, structure-activity relationship was carried out for the compounds possessing significant inhibition potential after docking studies. The binding free energy of analogs was evaluated via molecular mechanics generalized Born surface area (MM-GBSA) and Poisson-Boltzmann surface area (MM-PBSA) methods using AMBER 16 as a molecular dynamics (MD) simulation package. Based on potential findings, we report that selected candidates are more likely to be used as DPP-4 inhibitors or as starting leads for the development of novel and potent DPP-4 inhibitors.  相似文献   

3.
Lipid metabolism plays a significant role in influenza virus replication and subsequent infection. The regulatory mechanism governing lipid metabolism and viral replication is not properly understood to date, but both Phospholipase D (PLD1 and PLD2) activities are stimulated in viral infection. In vitro studies indicate that chemical inhibition of PLD1 delays viral entry and reduction of viral loads. The current study reports a three-dimensional pharmacophore model based on 35 known PLD1 inhibitors. A sub-set of 25 compounds was selected as the training set and the remaining 10 compounds were kept in the test set. One hundred and twelve pharmacophore models were generated; a six-featured pharmacophore model (AADDHR.57) with survival score (2.69) produced a statistically significant three-dimensional quantitative structure–activity relationship model with r2 = 0.97 (internal training set), r2 = 0.71 (internal test set) and Q2 = 0.64. The predictive power of the pharmacophore model was validated with an external test set (r2 = 0.73) and a systematic virtual screening work-flow was employed showing an enrichment factor of 23.68 at the top 2% of the dataset (active and decoys). Finally, the model was used for screening of the filtered PubChem database to fetch molecules which can be proposed as potential PLD1 inhibitors for blocking influenza infection.  相似文献   

4.
DNA gyrase subunit B (GyrB) is an attractive drug target for the development of antibacterial agents with therapeutic potential. In the present study, computational studies based on pharmacophore modelling, atom-based QSAR, molecular docking, free binding energy calculation and dynamics simulation were performed on a series of pyridine-3-carboxamide-6-yl-urea derivatives. A pharmacophore model using 49 molecules revealed structural and chemical features necessary for these molecules to inhibit GyrB. The best fitted model AADDR.13 was generated with a coefficient of determination (r²) of 0.918. This model was validated using test set molecules and had a good r² of 0.78. 3D contour maps generated by the 3D atom-based QSAR revealed the key structural features responsible for the GyrB inhibitory activity. Extra precision molecular docking showed hydrogen bond interactions with key amino acid residues of ATP-binding pocket, important for inhibitor binding. Further, binding free energy was calculated by the MM-GBSA rescoring approach to validate the binding affinity. A 10 ns MD simulation of inhibitor #47 showed the stability of the predicted binding conformations. We identified 10 virtual hits by in silico high-throughput screening. A few new molecules were also designed as potent GyrB inhibitors. The information obtained from these methodologies may be helpful to design novel inhibitors of GyrB.  相似文献   

5.
Extensively validated 3D pharmacophore models for ALK (anaplastic lymphoma kinase) and EGFR (T790M) (epithelial growth factor receptor with acquired secondary mutation) were developed. The pharmacophore model for ALK (r2 = 0.96, q2 = 0.692) suggested that two hydrogen bond acceptors and three hydrophobic groups arranged in 3-D space are essential for the binding affinity of ALK inhibitors. Similarly, the pharmacophore model for EGFR (T790M) (r2 = 0.92, q2 = 0.72) suggested that the presence of a hydrogen bond acceptor, two hydrogen bond donors and a hydrophobic group plays vital role in binding of an inhibitor of EGFR (T790M). These pharmacophore models allowed searches for novel ALK and EGFR (T790M) dual inhibitors from multiconformer 3D databases (Asinex, Chembridge and Maybridge). Finally, the eight best hits were selected for molecular dynamics simulation, to study the stability of their complexes with both proteins and final binding orientations of these molecules. After molecular dynamics simulations, one hit has been predicted to possess good binding affinity for both ALK and EGFR (T790M), which can be further investigated for its experimental in-vitro/in-vivo activities.  相似文献   

6.
A combined ligand- and target-based approach was used to analyse the interaction models of Cryptosporidium parvum inosine 5’-monophosphate dehydrogenase (CpIMPDH) with selective inhibitors. First, a ligand-based pharmacophore model was generated from 20 NAD+ competitive CpIMPDH inhibitors with the HipHop module. The characteristic of the NAD+ binding site of CpIMPDH was then described, and the binding modes of the representative inhibitors were studied by molecular docking. The combination of the pharmacophore model and the docking results allowed us to evaluate the pharmacophore features and structural information of the NAD+ binding site of CpIMPDH. This research supports the proposal of an interaction model inside the NAD+ binding site of CpIMPDH, consisting of four key interaction points: two hydrophobic-aromatic groups, a hydrophobic-aliphatic group and a hydrogen bond donor. This study also provides guidance for the design of more potent CpIMPDH inhibitors for the treatment of Cryptosporidium infections.  相似文献   

7.
Owing to the complex pathophysiology of autoimmune disorders, it is very challenging to develop successful treatment strategies. Single-target agents are not desired therapeutics for such multi-factorial disorders. Considering the current need for the treatment of complex autoimmune disorders, dual inhibitors of Syk and PI3Kδ have been designed using ligand and structure-based molecular modelling strategies. In the present work, structure and ligand-based pharmacophore modelling was implemented for a varied set of Syk and PI3Kδ inhibitors. Ligand-based pharmacophore models (LBPMs) were developed for two kinases: ADPR.14 (r2train = 0.809) for Syk, comprising one hydrogen bond acceptor, one hydrogen bond donor, one positive ionisable and one ring aromatic feature, and for PI3Kδ: AAARR.45 (r2train = 0.942) consisting of three hydrogen bond acceptor and two ring aromatic features. The generated e-pharmacophore models revealed an additional ring aromatic and hydrophobic feature important for Syk and PI3Kδ inhibition, respectively. Subsequently, LBPMs were modified resulting in APDRR.14 hypothesis for Syk inhibitors and AAAHRR.45 hypothesis for PI3Kδ inhibitors employed for virtual screening. Thus, the combination of ligand and structure-based pharmacophore modelling helped in developing ideal pharmacophore models that may be an efficient tool for the designing of novel dual inhibitors of Syk and PI3Kδ.  相似文献   

8.
In order to discover the novel anticonvulsant drugs, pharmacophore screening of the anticonvulsant inhibitors was enforced. Genetic Algorithm with Linear Assignment for Hypermolecular Alignment of Datasets (GALAHAD) and Comparative Molecular Field Analysis (CoMFA) studies were combined to implement our research. Firstly, multiple models were generated using GALAHAG based on high active molecules. Secondly, several of them were validated using the CoMFA study. Finally, a good values of q2 from training set and promising predictive power from test set were obtained based on one model simutaneously. One model had been selected as the most reasonable pharmacophore model. The results of the CoMFA study based on the model 1 suggested that both steric and electrostatic interactions played important roles.  相似文献   

9.
10.
Influenza endonucleases have appeared as an attractive target of antiviral therapy for influenza infection. With the purpose of designing a novel antiviral agent with enhanced biological activities against influenza endonuclease, a three-dimensional quantitative structure-activity relationships (3D-QSAR) model was generated based on 34 influenza endonuclease inhibitors. The comparative molecular similarity index analysis (CoMSIA) with a steric, electrostatic and hydrophobic (SEH) model showed the best correlative and predictive capability (q 2 = 0.763, r 2 = 0.969 and F = 174.785), which provided a pharmacophore composed of the electronegative moiety as well as the bulky hydrophobic group. The CoMSIA model was used as a pharmacophore query in the UNITY search of the ChemDiv compound library to give virtual active compounds. The 3D-QSAR model was then used to predict the activity of the selected compounds, which identified three compounds as the most likely inhibitor candidates.  相似文献   

11.
A pharmacophore model has been developed using diverse classes of epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitors useful in the treatment of human tumours. Among the top 10 generated hypotheses, the second hypothesis, with one hydrogen bond acceptor, one ring aromatic and three hydrophobic features, was found to be the best on the basis of Cat Scramble validation as well as test set prediction (r training?=?0.89, r test?=?0.82). The model also maps well to the external test set molecules as well as clinically active molecules and corroborates the docking studies. Finally, 10 hits were identified as potential leads after virtual screening of ZINC database for EGFR TK inhibition. The study may facilitate the designing and discovery of novel EGFR TK inhibitors.  相似文献   

12.
13.
Summary We report structural models of the full-length integrase enzyme (IN) of the human immunodeficiency virus type 1 (HIV-1) and its complex with viral and human DNA. These were developed by means of molecular modeling techniques using all available experimental evidence, including X-ray crystallographic and NMR structures of portions of the full-length protein. Special emphasis was placed on obtaining a model of the enzyme’s active site with the viral DNA apposed to it, based on the hypothesis that such a model would allow structure-based design of inhibitors that retain activity in vivo. This was because bound DNA might be present in vivo after 3’-processing but before strand transfer. These structural models were used to study the potential binding modes of various diketo-acid HIV-1 IN inhibitors (many of them preferentially inhibiting strand transfer) for which no experimentally derived complexed structures are available. The results indicate that the diketo-acid IN inhibitors probably chelate the metal ion in the catalytic site and also prevent the exposure of the 3’-processed end of the viral DNA to human DNA.  相似文献   

14.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were performed based on a series of azaindole carboxylic acid derivatives that had previously been reported as promising HIV-1 integrase inhibitors. Docking studies to explore the binding mode were performed based on the highly active molecule 36. The best docked conformation of molecule 36 was used as template for alignment. The comparative molecular field analysis (CoMFA) model (including steric and electrostatic fields) yielded the cross validation q 2 = 0.655, non-cross validation r 2 = 0.989 and predictive r 2 pred = 0.979. The best comparative molecular similarity indices analysis (CoMSIA) model (including steric, electrostatic, hydrophobic and hydrogen-bond acceptor fields) yielded the cross validation q 2 = 0.719, non-cross validation r 2 = 0.992 and predictive r 2 pred = 0.953. A series of new azaindole carboxylic acid derivatives were designed and the HIV-1 integrase inhibitory activities of these designed compounds were predicted based on the CoMFA and CoMSIA models.  相似文献   

15.
Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyses the fourth reaction of de novo pyrimidine biosynthesis in parasites, and represents an important target for the treatment of malaria. In this study, we describe pharmacophore-based virtual screening combined with docking study and biological evaluation as a rational strategy for identification of novel hits as antimalarial agents. Pharmacophore models were established from known PfDHODH inhibitors using the GALAHAD module with IC50 values ranging from 0.033 μM to 142 μM. The best pharmacophore model consisted of three hydrogen bond acceptor, one hydrogen bond donor and one hydrophobic features. The pharmacophore models were validated through receiver operating characteristic and Günere–Henry scoring methods. The best pharmacophore model as a 3D search query was searched against the IBS database. Several compounds with different structures (scaffolds) were retrieved as hit molecules. Among these compounds, those with a QFIT value of more than 81 were docked in the PfDHODH enzyme to further explore the binding modes of these compounds. In silico pharmacokinetic and toxicities were predicted for the best docked molecules. Finally, the identified hits were evaluated in vivo for their antimalarial activity in a parasite inhibition assay. The hits reported here showed good potential to become novel antimalarial agents.  相似文献   

16.
应用遗传算法相似性程序(GASP), 以作用于I型人类免疫缺陷病毒(human immun-odeficiency virus type 1, HIV-1)整合酶(IN)的二酮酸类(diketoacids, DKAs)抑制剂构建药效团模型. 所选训练集分子均具有可靠的类药性特征及DKAs药效团特征. 尝试将抑制剂与药效团叠合后的构象和抑制剂与IN的对接构象进行叠合, 得到药效团模型与分子对接构象中IN残基的相对位置, 并基于抑制剂的药效团模型特征与周围IN氨基酸残基位置的匹配情况进行药效团特征的修改. 所得最优药效团由1个疏水特征、3对氢键特征和1个氢键供体特征组成. 该药效团的命中物质量(goodness of hit, GH)为0.56, 产出率(Y)达63.6%, 假阳性率(FP)为0.41%. 该药效团具有较好的置信度, 产出率较高而假阳性率较低, 可用于数据库搜索发现新的具有DKAs药效团特征的活性化合物, 也可为先导化合物的改造提供帮助.  相似文献   

17.
Upregulation of store-operated Ca2+ influx via ORAI1, an integral component of the CRAC channel, is responsible for abnormal cytokine release in active rheumatoid arthritis, and therefore ORAI1 has been proposed as an attractive molecular target. In this study, we attempted to predict the mechanical insights of ORAI1 inhibitors through pharmacophore modelling, 3D-QSAR, molecular docking and free energy analysis. Various hypotheses of pharmacophores were generated and from that, a pharmacophore hypothesis with two hydrogen bond acceptors, one hydrogen bond donor and two aromatic rings (AADRR) resulted in a statistically significant 3D-QSAR model (r2 = 0.84 and q2 = 0.74). We believe that the obtained statistical model is a reliable QSAR model for the diverse dataset of inhibitors against the IL-2 production assay. The visualization of contours in active and inactive compounds generated from the 3D-QSAR models and molecular docking studies revealed major interaction with GLN108, HIS113 and ASP114, and interestingly, these residues are located near the Ca2+ selectivity filter region. Free energy binding analysis revealed that Coulomb energy, van der Waals energy and non-polar solvation terms are more favourable for ligand binding. Thus, the present study provides the physical and chemical requirements for the development of novel ORAI1 inhibitors with improved biological activity.  相似文献   

18.
Efficient 3D database screening for novel HIV-1 IN inhibitors   总被引:2,自引:0,他引:2  
We describe the use of pharmacophore modeling as an efficient tool in the discovery of novel HIV-1 integrase (IN) inhibitors. A three-dimensional hypothetical model for the binding of diketo acid analogues to the enzyme was built by means of the Catalyst program. Using these models as a query for virtual screening, we found several compounds that contain the specified 3D patterns of chemical functions. Biological testing shows that our strategy was successful in searching for new structural leads as HIV-1 IN inhibitors.  相似文献   

19.
Lymphoid tyrosine phosphatase (LYP), encoded by the PTPN22 gene, has a critical negative regulatory role in T-cell antigen receptor (TCR) and emerged as a promising drug target for human autoimmune diseases. A five-point pharmacophore with two hydrogen bond acceptors, one hydrogen bond donor and two aromatic ring features was generated for a series of benzofuran salicylic acid derivatives as LYP inhibitors in order to elucidate their anti-autoimmune activity. The generated pharmacophore yielded a significant 3D-QSAR model with r2 of 0.9146 for a training set of 27 compounds. The model also showed excellent predictive power with Q2 of 0.7068 for a test set of eight compounds. The investigation of the 3D-QSAR model has revealed the structural insights which could lead to more potent analogues. The most active and inactive compounds were further subjected to electronic structure analysis using density functional theory (DFT) at B3LYP/3?21?G level to support the 3D-QSAR predictions. The results obtained from this study are expected to be useful in the proficient design and development of benzofuran salicylic acid derivatives as inhibitors of LYP.  相似文献   

20.
ATP dependent ParE enzyme is as an attractive target for the development of antibacterial agents. Atom based 3D-QSAR model AADHR.187 was developed based on the thirty eight Escherichia coli ParE inhibitors. The generated model showed statistically significant coefficient of determinations for the training (R2 = 0.985) and test (R2 = 0.86) sets. The cross-validated correlation coefficient (q2) was 0.976. The utility of the generated model was validated by the enrichment study. The model was also validated with structurally diverse external test set of ten compounds. Contour plot analysis of the generated model unveiled the chemical features necessary for the E. coli ParE enzyme inhibition. Extra-precision docking result revealed that hydrogen bonding and ionic interactions play a major role in ParE protein-ligand binding. Binding free energy was computed for the data set inhibitors to validate the binding affinity. A 30-ns molecular dynamics simulation showed high stability and effective binding of inhibitor 34 within the active site of ParE enzyme. Using the best fitted model AADHR.187, pharmacophore-based high-throughput virtual screening was performed to identify virtual hits. Based on the above studies three new molecules are proposed as E. coli ParE inhibitors with high binding affinity and favourable ADME properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号