首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel fluorescent chemosensor, (E)-7-(diethylamino)-3-((2-phenylimidazo[1,2-a]pyridin-3-ylimino)methyl)-2H-chromen-2-one 1a, has been synthesised and characterised. This chemosensor displayed an extreme selective fluorescence emission only with Cu2+ ion over all other metal ions examined. The Job’s plot experiment analysis suggested the binding ratio of the chemosensor 1a with Cu2+ was 1:1 metal-to-ligand ratio. The association constant for Cu2+ towards receptor 1a obtained from Benesi–Hildebrand plot was found to be 4.859 × 103 M?1 with a detection limit 4.6 × 10?8 M. Fluorescence enhancement caused by Cu2+ binding with chemosensor 1a attributed to combinational effect of intramolecular charge transfer and chelation-enhanced fluorescence occurred at pH 8.0.  相似文献   

2.
Newly designed and synthesised chemosensor 1 selectively recognises Fe3+ ions in CHCl3–MeOH (1:1, v/v) by showing ratiometric change in emission and green colouration of the solution under the exposure of UV light. The ensemble 1·Fe3+ selectively detects F ions over other halides and the phenomenon is useful to construct combinatorial logic gate. Furthermore, the probe 1 can be used for in vitro detection of Fe3+ in human cervical cancer (HeLa) cells.  相似文献   

3.
New water‐soluble hyperbranched polyfluorenes bearing carboxylate side chains have been synthesized by the simple “A2 + B2 + C3” protocol based on Suzuki coupling polymerization. The linear polyfluorene analogue LPFA was also synthesized for comparative investigation. The optical properties of the neutral precursory polymers in CHCl3 and final carboxylic‐anionic conjugated polyelectrolytes in buffer solution were investigated. The obtained hyperbranched polyelectrolyte HPFA2 with lower content of branch unit (2%) showed excellent solubility and high fluorescence quantum yield (?F = 89%) in aqueous solution. Fluorescence quenching of HPFA2 by different metal ions was also investigated, the polyelectrolyte showed high selectivity for Hg2+ and Cu2+ ions relative to other various metal ions in buffer solution. The Stern‐Volmer constant Ksv was determined to be 0.80 × 106 M?1 for Hg2+ and 3.11 × 106 M?1 for Cu2+, respectively, indicating the potential application of HPFA2 as a highly selective and sensitive chemosensor for Hg2+ and Cu2+ ions in aqueous solution. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3431–3439, 2010  相似文献   

4.
A simple colorimetric and fluorimetric ‘On–Off’ sensor L (3,3′-dimethyl -[1,1′-biphenyl]-4,4′-diyl)bis(azanylylidene)bis(methanylylidene)bis(naphthalen-2-ol) for Cu2+ ions bearing o-tolidine substituents has been designed and synthesised, and exhibits significant fluorimetric and colorimetric response for Cu2+ in DMSO/H2O (8:2, v/v) HEPES buffer (pH 7.2) solution. The detection limit of the sensor towards Cu2+ is 7.25 × 10? 8 M and the association constant Ka of 9.86 × 104 M? 1 was determined. Furthermore, other anions, including Fe3+, Hg2+, Ag+, Ca2+, Co2+, Ni2+, Cd2+, Pb2+, Zn2+, Cr3+ and Mg2+ have almost no influence on the probe's behaviour. Test strips based on the sensor L were fabricated, which could act as convenient and efficient Cu2+ test kits.  相似文献   

5.
Chromenone-rhodamine conjugate 1 has been synthesized and its metal ion binding properties have been studied in CH3CN/water (3:1, v/v; 10 mM HEPES buffer; pH = 6.85). Compound 1 senses multiple metal ions such as Al3+ and Hg2+ by exhibiting turn on fluorescence and color change (colorless to pink). Al3+ and Hg2+ ions have been distinguished with the aid of tetrabutylammonium iodide (TBAI). While in the presence of I? the pink color of the 1.Hg2+ complex was completely discharged; under identical conditions the pink color of 1.Al3+ complex was retained.  相似文献   

6.
A novel rhodamine-based chemosensor (R) was designed and synthesised for selective recognition of Hg2+ ion in real water samples collected from different places. The chemosensor was prepared in green condition with high yield. The selectivity of R was examined with various metal ions, among which only Hg2+ was identified selectively with offon mechanism along with enhancement of fluorescence. Metal ions recognition has been carried out using UV–vis and fluorescence studies taking µM concentration of chemosensor R in HEPES buffer. The detection limit of R was calculated and found to be 4.4 × 10–9 M. Quantum chemical (DFT) calculation was carried out in order to acquire knowledge about the stability of R in presence of Hg2+ ions. Cell viability and fluorescence microscopic experiments showed R as cytocompatible and can be used as a fluorescent probe for detecting Hg2+ in living cells.  相似文献   

7.
Abstract

A fluorescent sensor TPE-TSC with aggregation induced emission (AIE) characteristic is synthesized for detecting Hg2+ by attaching thiosemicarbazide (TSC) unit into tetraphenylethylene (TPE) group. TPE-TSC exhibits intense green emission in DMSO/H2O (V:V?=?1:9) solution with the formation of the aggregation. TPE-TSC shows outstanding fluorescence quenching toward Hg2+ over other metal ions due to the formation of complex TPE-TSC/Hg2+ with a 2:1 binding ratio. The detection limit of TPE-TSC for Hg2+ is 1?×?10?5 mol·L?1.  相似文献   

8.
A rhodamine-conjugated coumarin (L) was used in designing a selective fluorescence chemosensor for the determination of trace amounts of Cr3+ ions in acetonitrile–water (MeCN/H2O (90:10, %v/v) solutions. The intensity of the fluoresce emission of the chemosensor is intensified upon addition of Cr3+ ions in MeCN/H2O (90:10, %v/v) solutions, due to the formation of a selective 1:1 complex between L and Cr3+ ions. The fluorescence enhancement versus Cr3+ concentration has been found to be linear from 1.0?×?10?7 to 1.8?×?10?5 M and a detection limit of 7.5?×?10?8 M. The proposed fluorescent probe proved to be highly selective towards Cr3+ ions as compared to other common metal ions and could be successfully applied to the determination of Cr3+ concentrations in some water and wastewater samples.  相似文献   

9.
By rationally introducing glutathione functionalized 1, 8–naphthalimide, a novel fluorescent chemosensor (NG) was successfully synthesized. NG can high selectively and sensitively recognize Fe3+/Hg2+ ions through quenching of fluorescence among all kinds of common metal ions in aqueous medium. The binding stoichiometry ratio of NG–Fe3+ is verified as 2:1and NG–Hg2+ as 1:2 confirmed by Job's plot method, FT-IR, 1H NMR and ESI–MS spectrum, and the possible sensing mechanism were also proposed. The chemosensor NG toward Fe3+ and Hg2+ displays the excellent advantages of high selectivity and sensitivity, low detection limits (7.92?×?10?8 and 4.22?×?10?8?M), high association constants (3.37?×?108 and 8.14?×?104?M?2), instataneous response (about 10s) and wide pH response range (3.0–8.0). Importantly, the chemosensor NG was successfully applied to determine Hg2+ in tap water. Meanwhile, the test strips based on NG were prepared, which could conveniently and efficiently detect Fe3+ and Hg2+. Moreover, the complex of NG and Fe3+ (NG–Fe3+) showed high selectivity and sensitivity for H2PO4 ̄ over many other anions in the same medium.  相似文献   

10.
A structurally simple (Z)-2-(naphthalen-2-ylmethylene)-N-phenylhydrazinecarbothioamide (R1) was used as a colorimetric and fluorescent sensor for both F and Cu2+/Hg2+ ions. R1 selectively recognised F ions as indicated by colour change from colourless to green. Fluorescence spectral data reveal that R1 is an excellent fluorescence chemosensor for Cu2+ ions. Finally, R1 was successfully applied to the bioimaging of Cu2+ ions in RAW 264.7 macrophage cells.  相似文献   

11.
A simple highly sensitive and selective turn-on fluorescent chemosensor L based on bis-Schiff-base for Pb2+ ions was synthesized and characterized by spectroscopic techniques. L having high binding affinity towards Pb2+ ions of 2.10 × 104 M?1 selectively detects Pb2+ ions with almost no interference among various competitive ions by a 11-fold fluorescent enhancement in CH3CN/H2O (95:5, v/v) solution over a wide pH range. Moreover, sensor L displayed a lower detection limit of 3.80 × 10?7 M, which is low enough for sensing sub-millimolar concentration of Pb2+ encountered practically.  相似文献   

12.
A new, highly sensitive probe L2 for the selective detection of Hg2+ in organo-aqueous (H2O:CH3CN, 1:1, v/v, HEPES buffer, pH 7.2) medium has been synthesized from rhodamine 6G-hydrazide and 4-nitroindole-3-carboxaldehyde. It was thoroughly characterized by physicochemical techniques including single crystal X-ray diffraction studies. The reaction of L2 with Hg2+ gives a 1:1 stoichiometry resulting in a 146 fold fluorescence enhancement and a binding constant (Kf) of 3?×?104 M?1. The spirolactam form of the probe is non-fluorescent; however, it shows dual channel (absorbance and fluorescence) recognition of Hg2+ via CHEF effect through the opening of the spirolactam ring. The quantum yields of L2 (0.00045) and L2-Hg2+ (0.29) show the higher stability of complex in the excited state over the free ligand. The 44.5?nM LOD value demonstrates the detection of Hg2+ at a very low concentration range. Cell imaging studies show the cytoplasmic recognition of Hg2+ by L2. Experimental results are comparable with theoretical values obtained by DFT studies. The fluorescence emission of the complex was completely quenched by I- and from the reversibility studies an advance level INHIBIT logic gate and memory device can be framed.  相似文献   

13.
A new and an easy-to-make simple benzimidazole-based chemosensor 1, derived from l -valine is reported. The chemosensor effectively recognises Hg2+ ion in the open cleft in CH3CN containing 0.2% DMSO by exhibiting significant enhancement in fluorescence emission. In the selectivity, the steric isopropyl groups in 1 play the key role as confirmed by considering the model compound 2. The ensemble of 1.Hg2+, on the other hand, shows the fluorescence sensing of l -cysteine, homocysteine, and glutathione over the other amino acids with no thiol group in aq. DMSO (DMSO:H2O = 4:1, v/v).  相似文献   

14.
A new Schiff base fluorescence probe, 3-Allylsalicylaldehyde salicylhydrazone (L), for Mg2+ was designed and synthesized. The fluorescence of the sensor L was enhanced remarkably by Mg2+ with 2:1 binding ratio, and the binding constant was determined to be 1.02 × 107 M?1. Probe L had high sensitivity for Mg2+ in a solution of DMF/water (4:1, v/v, pH 7.5), and the detection limit was 4.88 × 10?8 mol/L. Common coexistent metal ions, such as K+, Na+, Ag+, Ca2+, Zn2+, Ba2+, Bi2+, Cu2+, Ni2+, Hg2+, Fe3+ , and Al3+, showed little or no interference on the detection of Mg2+ in solution. The fluorescence probe L, which was successfully used for the determination of trace Mg(II) in real samples, was shown to be promising for liquid-phase extraction coupled with fluorescence spectra.  相似文献   

15.
Carbazole-based Schiff base chemosensor was synthesized in one-pot synthesis using 2-hydroxy-1-naphtaldehyde for fluorescent sensing of Al3+ ions. Characterization of the ligand (L) was revealed through spectroscopic and physicochemical techniques. The fluorescence emission responses of L to various metal ions and anions were investigated. The chelation was studied by UV–vis, 1H NMR, LC-MS/MS, fluorescence titration and Job’s plot analysis. Bathochromic shift resulted from charge transfer from L to electrophilic Al3+ ion was observed in the chelation of L with Al3+. The potentiality of L to be a distinguished probe to detect Al3+ ions was due to a chelation enhanced fluorescence (CHEF) effect, concomitant with noticeable fluorescent enhancement. A significant fluorescence enhancement at 533 nm was observed in ethanol–water (1:1, v/v) solution upon addition of Al3+ along with a distinct color change from yellow to white. Non-fluorescent ligand exposed highly sensitive turn-on fluorescent sensor behavior for selectively sensing Al3+ ions via 1:1 (ligand:metal) stoichiometry. The ligand’s specificity in the existence of other tested metal ions and anions indicated no observation in color change. The ligand-Al3+ complex formation was reversible upon addition of chelating agent EDTA. The ligand interacted with Al3+ ions with an association constant of Ka = 5 × 104 M?1. The limit of detection (LOD) was found to be 2.59 × 10-7 M. The synthesized Schiff base could efficiently detect Al3+ ions as a fluorescent sensor.  相似文献   

16.
Naphthalene and pyrrole substituted guanidine 1 has been designed and synthesised. Compound 1 efficiently distinguishes Cu2+, Hg2+ and Pb2+ ions by exhibiting different responses in fluorescence. While compound 1 exhibited turn-on emission selectively in the presence of Hg2+ and Pb2+ ions in CH3CN and CH3CN–H2O (1:1, v/v), respectively, it showed decrease in emission upon interaction with Cu2+ ion in CH3CN. Furthermore, the Cu-1 ensemble has been established as a potential probe for selective detection of CN? ion over a series of other anions involving colour change (in ordinary light: colourless to light yellow and under UV light: colourless to sky blue). Theoretical insight has been invoked to understand the mode of metal–ligand interaction.  相似文献   

17.
The supramolecular interactions of the ocular drug tropicamide (TR) with cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) were investigated in aqueous solutions by using 1H NMR, ESI-MS and UV–vis spectroscopic techniques. The results indicate a 1:1 binding stoichiometry of TR with CB7 and CB8. The binding constants of TR in its protonated form were higher (e.g. K = 4 × 106 M? 1 with CB8) than in its neutral form (e.g. K = 1.4 × 104 M? 1 with CB8), which led to a complexation-induced increase in its pK a value of ca. 0.5 and 2 units with CB7 and CB8, respectively. In the presence of about 1% (w/v) CB8, the ionisation degree of 0.1% (w/v) TR was increased from 2% to 62% at neutral pH. The increase in the pK a value and thus stabilisation of the protonated TR species at neutral pH is discussed in the context of supramolecular drug delivery of ophthalmologic drugs.  相似文献   

18.
李广科a  b  刘敏a  b  杨国强a  陈传峰  a  黄志镗  a 《中国化学》2008,26(8):1440-1446
我们方便地合成了上沿修饰四丹磺酰胺基团的杯[4]芳烃衍生物1,发现该化合物在含50%水的乙腈中显示出对汞离子高选择性和灵敏性的识别作用,竞争实验表明多数金属离子对其检测干扰较小。机理研究结果表明荧光萃灭源于由丹磺酰胺基团到汞离子的光致电子转移过程。另外,通过研究1和1-Hg2+的荧光衰减实验,以及对比双丹磺酰胺杯[4]芳烃2和单丹磺酰胺杯[4]芳烃3对汞离子的识别作用,发现化合物1的四丹磺酰胺基团具有很好的预组织和协同作用。化合物1对汞离子的检测限为3.41×10-6 mol·L-1,这可以使1成为一个潜在的汞离子荧光化学传感器。  相似文献   

19.
A novel coumarin derivative CTT was synthesized via the condensation of 7-(N,N-diethylamino) coumarin-3-aldehyde with 5-amino-1,3,4-thiadiazole-2-thiol and its structure was characterized using infrared spectroscopy (IR), 1H NMR, mass spectrometry (MS) techniques, and elemental analysis. The recognition properties of CTT with metal ions were investigated in CH3CN–H2O (v/v = 1/1) solution using UV–vis absorption and fluorescence emission spectrum method. The results showed that CTT could monitor Cu2+ and Hg2+ simultaneously as a dual-function chemosensor in CH3CN–H2O (v/v = 1/1). CTT could be used to detect Cu2+ colorimetrically; when using CTT, a color change from yellowish-brown to yellowish-green could be readily observed by the naked eye. CTT showed turn-on fluorescent recognition of Hg2+, the fluorescence enhancement was attributed to the inhibited C=N isomerization and the obstructed excited state intramolecular proton transfer (ESIPT) of CTT. The recognition mechanism of CTT for Cu2+ and Hg2+ was studied by experiments and theoretical calculations, respectively. Therefore, CTT has the ability to be a “single chemosensor for dual targets.”  相似文献   

20.
This article reports the selective sensing ability of a newly synthesized calix[4]arene Schiff base (C4TSB) derivative. C4TSB exhibited strong turn-off fluorescence affinity for Hg2+ and Au3+. The selective sensing ability of receptor was investigated in the presence of different co-existing competing ions. The limit of detection for Hg2+ and Au3+ was determined as 1.9 × 10?5 and 1.0 × 10?6 M, respectively. Receptor forms 1:1 stoichiometric complex with both metals and their binding constants were calculated as 7.9 × 103 M?1 for Hg2+ and 5.7 × 103 M?1 for Au3+. Complexes were also characterized through FT-IR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号