首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copolymers of styrene/p-vinyltrifluoroacetophenone were prepared by two different reaction routes: (1) modification of polystyrene with trifluoroacetyl chloride and (2) copolymerization of styrene and p-vinyltrifluoroacetophenone (VTFA). There appears to be a limit to the modification method because only a maximum content of 14.5 mole % trifluoroacetyl functionality could be attached to the polymer before the onset of crosslinking. Differential scanning calorimetry (DSC) was used to determine their Tg's. In addition, the reactivity ratios of styrene and VTFA were investigated. The reactivity ratios and Q and e values were r1 = 0.30 ± 0.09 (styrene) and r2 = 1.3 ± 0.3 (VTFA); Q1 = 1.0 and e1 = ?0.8 (styrene); Q2 = 0.44 and e2 = 1.93 (VTFA).  相似文献   

2.
2-Phthalimido-1,3-butadiene (2-PB) was polymerized either radically or thermally in bulk and in solution. While the polymer obtained by solution polymerization was soluble in some solvents such as halogenated hydrocarbons, dioxane, and dimethylformamide and had a softening point in the range of 160–170°C., that obtained by polymerization in bulk was insoluble in any solvent and only swollen on being immersed in such solvents as above. The reduced viscosity of the soluble polymer obtained by solution polymerization was approximately 1.0, and this value remained almost unchanged with varying polymerization time. Likewise the cationic polymerization in acetylene tetrachloride or in chloroform at 20°C. with the use of cationic catalysts such as boron trifluoride and stannic chloride was attempted, but no formation of polymer was observed. This monomer preferentially reacted with acrylonitrile, methyl methacrylate, styrene, and N-vinylphthalimide to form the respective copolymers; it reacted somewhat less readily with vinyl acetate. The monomer reactivity ratios in the copolymerization with styrene were calculated by the Fineman and Ross method and found to be r1 (2-PB) = 5.2 and r2 (styrene) = 0.11, respectively, from which the Q, e parameters were successively evaluated to be Q = 5.0 and e = ?0.05. The fact that e value is close to zero, easily explains why this monomer can copolymerize well both with acrylonitrile, which has a highly positive value of e (1.2) and with styrene, for which e is considerably negative (-0.8).  相似文献   

3.
p-Styrenesulfonyl(β-chloroethyl)amide (III) was prepared and copolymerized with styrene (M1). The monomer reactivity ratios were determined (r1 = 0.25 = 0.1, r2 = 1.25 ± 0.25), and Q and e values were calculated (1.69 and 0.28, respectively). The polymer reacts with nucleophilic reagents such as amines and phenols in the presence of pyridine to the extent of 15–98%. Fibers from copolymers of acrylonitrile and III react with Congo Red in the presence of pyridine.  相似文献   

4.
Copolymerization of acrylonitrile with styrene spontaneously occurred on addition of zinc chloride without addition of any other radical initiator. The composition of the copolymer approached that of strictly alternating copolymer as zinc chloride added to the copolymerization system increased. The significance of the apparent monomer reactivity ratios of this copolymerization system was studied from a kinetic point of view, and it was shown that the monomer sequence distribution is indicated by the apparent monomer reactivity ratios. Further, equations which represent the relation between the apparent monomer reactivity ratios and Q,e values at a given salt concentration were derived. These equations reasonably accounted for the decrease of the apparent monomer reactivity ratios of the copolymerization of acrylonitrile with styrene in the presence of zinc chloride and the behavior of the other acrylonitrile copolymerization systems in the presence of zinc chloride. The initiation step of the spontaneous radical copolymerization of acrylonitrile with styrene in the presence of zinc chloride was explained by a cross-initiation mechanism.  相似文献   

5.
The monomer initiator t-butyl-p-vinylperbenzoate (TBVP) was synthesized and its homo- and copolymerization with styrene, methacrylonitrile, isoprene and phenylmethacrylate was investigated. TBVP is preponderantly incorporated in all four systems; values of Q = 2.27 and e = ?0.13 characterize TBVP as a weak donor with a high monomer reactivity. Kinetic considerations show that all propagation steps in which TBVP takes part are faster or at least as fast as the self-propagation steps of the comonomers used. Rate constants and activation energies of the thermal decomposition of poly(t-butyl-p-vinylperbenzoate) and poly(t-butyl-p-vinylperbenzoate-co-styrene) were determined. The polymer initiators were used for grafting experiments with styrene, acrylonitrile, and methyl methacrylate. The data evaluated for the grafting efficiency, the success of grafting, and the degree of grafting show that these polymers of p-vinylperbenzoate are efficient initiators.  相似文献   

6.
Methyl-4-vinylphenylsulfoxide (1) was prepared by the selective oxidation of 4-methylthiostyrene with sodium metaperiodate in 87% yield. This monomer was readily homopolymerized in DMSO by AIBN at 60°C. The polymer obtained is soluble in ethanol, chloroform, DMSO, and DMF, but insoluble in water, benzene, and petroleum ether. The inherent viscosity of this polymer was 0.33 dL/g in DMSO. This sulfoxide monomer (1) was copolymerized with styrene, methyl methacrylate, acrylo-nitrile, and acrylamide under radical conditions. From the copolymerization with styrene, copolymerization parameters were obtained as follows; r1 = 0.56, rSt, = 0.26, and Q1 = 1.19, e1 = 0.58. Similarly, methyl-4-vinylbenzylsulfoxide (2) was prepared, and the polymerizability of (2) was also investigated.  相似文献   

7.
Free‐radical homo‐ and copolymerization behavior of N,N‐diethyl‐2‐methylene‐3‐butenamide (DEA) was investigated. When the monomer was heated in bulk at 60 °C for 25 h without initiator, rubbery, solid gel was formed by the thermal polymerization. No such reaction was observed when the polymerization was carried out in 2 mol/L of benzene solution with with 1 mol % of azobisisobutyronitrile (AIBN) as an initiator. The polymerization rate (Rp) equation was Rp ∝ [DEA]1.1[AIBN]0.51, and the overall activation energy of polymerization was calculated 84.1 kJ/mol. The microstructure of the resulting polymer was exclusively a 1,4‐structure where both 1,4‐E and 1,4‐Z structures were included. From the product analysis of the telomerization with tert‐butylmercaptan as a telogen, the modes of monomer addition were estimated to be both 1,4‐ and 4,1‐addition. The copolymerizations of this monomer with styrene and/or chloroprene as comonomers were also carried out in benzene solution at 60 °C. In the copolymerization with styrene, the monomer reactivity ratios obtained were r1 = 5.83 and r2 = 0.05, and the Q and e values were Q = 8.4 and e = 0.33, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 999–1007, 2004  相似文献   

8.
N-acryloyl pyrrolidone (NAP) was synthesized by reaction of pyrrolidone with acryloyl chloride. First, the polymerization of NAP and copolymerization of NAP with styrene (St) were carried out at 60°C, using 2,2′-azobisisobutyronitrile (AIBN) as an initiator. Kinetic studies showed that the rate of polymerization (Rp) could be expressed by Rp = K [AIBN]0.5 [NAP]1.0. The reactivity of NAP was found to be larger than that of N-methacryloyl pyrrolidone. The overall activation energy was calculated to be 24.3 kcal mole?1. The following monomer reactivity ratio and Q and e values were obtained. NAP(M1)—St(M2): r1 = 1.50, r2 = 0.35, Q1 = 0.42, and e1 = 1.60. Second, graft copolymers were synthesized by reacting pyrrolidone, in the presence of a catalytic amount of its potassium salt, with poly(NAP-co-St).  相似文献   

9.
The polymerization and copolymerization of 2-phthalimidomethyl-1,3-butadiene were investigated. This monomer was easily polymerized by benzoyl peroxide catalyst in bulk or in solvent, and by γ-radiation in the solid state to give polymers having a softening point of 135–145°C. Although these resulting polymers did not give x-ray diffraction patterns, they showed crystalline patterns by electron diffraction. On the other hand, cationic polymerization with the use of boron trifluoride diethyl etherate in chloroform was attempted, but no formation of the polymer was observed. Also, this monomer was easily copolymerized with styrene in N,N-dimethylformamide. The monomer reactivity ratios and Alfrey-Price Q and e values calculated from the copolymerization data of this monomer (M1) with styrene (M2) were r1 = 2.0 ± 0.13, r2 = 0.15 ± 0.02, and Q1 = 2.78, e1 = 0.30.  相似文献   

10.
α-Trifluoromethylstyrene (TFMST) does not undergo radical homopolymerization with azobis(isobutyronitrile) (AIBN) in bulk at 60°C. Low-temperature initiation was not effective either. Radical copolymerization of TFMST (M2) with styrene (ST, M1) has yielded monomer reactivity ratios as follows: r1 = 0.60 and r2 = 0.00. It has been found that the cyclohexyl radical generated by reaction of cyclohexylmercuric chloride with sodium borohydride adds to the β-carbon of TFMST 7.5 times faster than that of ST. Combination of the copolymerization analysis and the “mercury method” has allowed us to estimate Alfrey–Price Q and e parameters for TFMST to be 0.43 and 0.90, respectively. Thus, due to the strongly electron-withdrawing effect of the trifluoromethyl group, this styrene is highly electron deficient. In spite of the favorable electronic effect, however, the ceiling temperature appears very low, presumably due to the steric hindrance.  相似文献   

11.
Copolymers of 2-sulfoethyl methacrylate, (SEM) were prepared with ethyl methacrylate, ethyl acrylate, vinylidene chloride, and styrene in 1,2-dimethoxyethane solution with N,N′-azobisisobutyronitrile as initiator. The monomer reactivity ratios with SEM (M1) were: vinylidene chloride, r1 = 3.6 ± 0.5, r2 = 0.22 ± 0.03; ethyl acrylate, r1 = 3.2 ± 0.6, r2 = 0.30 ± 0.05; ethyl methacrylate, r1 = 2.0 ± 0.4, r2 = 1.0 ± 0.1; styrene, r1 = 0.6 ± 0.2, r2 = 0.37 ± 0.03. The values of the copolymerization parameters calculated from the monomer reactivity ratios were e = +0.6 and Q = 1.4. Comparison of the monomer reactivities indicates that SEM is similar to ethyl methacrylate with regard to copolymerization reactivity in 1,2-dimethoxyethane solution. The sodium salt of 2-sulfoethyl methacrylate, SEM?Na, was copolymerized with 2-hydroxyethyl methacrylate (M2) in water solution. Reactivity ratios of r1 = 0.7 ± 0.1 and r2 = 1.6 ± 0.1 were obtained, indicating a lower reactivity of SEM?Na in water as compared to SEM in 1,2-dimethoxyethane. This decreased reactivity was attributed to greater ionic repulsion between reacting species in the aqueous medium.  相似文献   

12.
The polymerization of trimethylvinylgermane (TMGeV) with the use of γ-ray, radical, and ionic initiator was attempted, but homopolymer was not obtained. This monomer did not undergo polymerization by itself, but polymerized with high concentration of n-BuLi. Copolymerization of TMGeV with styrene (St) and methyl methacrylate (MMA) was carried out by using radical initiator. From the results obtained by the copolymerization, monomer reactivity ratios and Qe values were obtained as follows: for the system St(M1)–TMGeV (M2), r1 = 24.4, r2 = 0.009, Q2, = 0.0049, e2 = 0.43; for the system MMA (M1)–TMGeV (M2), r1 = 19.98, r2 = 0.05; Q2 = 0.037, e2 = 0.43., The polymerizability of TMGeV is discussed on the basis of the Q and e values obtained.  相似文献   

13.
As in the case of vinylhydroquinone (I), its alkyl-substituted derivative, 2-methyl-5-vinylhydroquinone (II) was found to copolymerize with methyl methacrylate by tri-n-butylborane in cyclohexanone at 30°C. II was prepared from the O,O′-bisether compound, 2-methyl-5-vinyl-O,O′-bis(1′-ethoxyethyl)hydroquinone (III). The monomer reactivity ratios (M2 = II) were determined to be r1 = 0.37 and r2 = 0. No homopolymerization proceeded under the same conditions. Ordinary free-radical initiators, such as azobisisobutyronitrile and benzoyl peroxide, were not effective in the homopolymerization of II. 1:1 Copolymers were obtained from II and maleic anhydride by using tri-n-butylborane as an initiator. The copolymers exhibited no definite melting range and decomposed at 370–375°C endothermally (DSC). The polymerization behavior of III was also investigated. Although tri-n-butylborane did not initiate the homopolymerization of the monomer, azobisisobutyronitrile was capable of initiating the homopolymerization and copolymerization of III. The monomer reactivity ratios (M1 = styrene) were determined to be r1 = 0.83 and r2 = 0.18. The ratios gave the following Q and e values; Q = 0.15 and e = ?2.2.  相似文献   

14.
The monomer reactivity ratios for the radical copolymerization of crotononitrile (CN), methyl crotonate (MC), and n-propenyl methyl ketone (PMK) with styrene (St) were measured at 60°C. in benzene and little penultimate unit effect was shown for these systems. The values obtained were: St–CN, r1 = 24.0, r2 = 0; St–MC, r1 = 26.0, r2 = 0.01; St–PMK, r1 = 13.7, r2 = 0.01. The rate of copolymerization and the viscosity of the copolymer decreased markedly as the molar fraction of the crotonyl compound in the monomer mixture increased. The Q–e values were also calculated to be as follows: CN, e = 1.13, Q = 0.009; MC, e = 0.36, Q = 0.015; PMK, e = 0.61, Q = 0.024. A linear relationship was obtained between the e values of the crotonyl compounds and their Hammett constants σm.  相似文献   

15.
7,7-Bis(methoxycarbonyl)-, 7,7-bis(ethoxycarbonyl)-, and 7,7-bis(isopropoxycarbonyl)-1,4-benzoquinone methides ( 4a, 4b , and 4c ) were successfully prepared as pure, isolable yellow-orange needles. The values of the first reduction potential for 4a, 4b , and 4c were measured in dichloromethane containing tetrabutylammonium perchlorate by cyclic voltammetry to be −0.54, −0.55, and −0.55 V, respectively, indicating that the alkyl groups do not significantly affect their electron-accepting properties. An anionic initiator butyllithium induced the homopolymerizations of 4a–c at 0°C, but a cationic initiator boron trifluoride etherate did not of 4a–c at 0°C. Compounds 4a and 4b homopolymerized with a radical initiator 2,2′-azobis(isobutyronitrile) (AIBN), but 4c did not, probably due to a larger steric hindrance effect of the isopropyl group compared with methyl and ethyl groups. Homopolymerizable compound 4a copolymerized with styrene in benzene in the presence of AIBN in a random fashion to give the monomer reactivity ratios r1 ( 4a ) = 2.40 ± 0.40 and r2 (styrene) = 0.01 ± 0.02 at 60°C and the Q and e values of 4a were 21.2 and +1.13, respectively, indicating that 4a is a highly conjugative and electron-accepting monomer, while the nonhomopolymerizable compound 4c copolymerized with styrene in a perfectly alternating fashion in benzene in the presence of AIBN at 60°C. No copolymerizations of 4a or 4c with 7,7,8,8-tetracyanoquinodimethane took place in dichloromethane in the presence of AIBN at 60°C. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
Oxazolidone group-containing vinyl monomers, 4-(2-oxo-3-oxazolidinyl)methylstyrene (OS) and 4-[2-(2-oxo-3-oxazolidinyl)ethoxy]methylstyrene (OES), were synthesized and their polymerization and copolymerization behaviors with styrene (St), p-methoxystyrene (PMS), and m-hydroxystyrene (MHS) were investigated. OS was prepared in 70% yield by the reaction of 2-oxazolidone with p-chloromethylstyrene in the presence of sodium hydride. OES was obtained by the similar reaction of p-chloromethylstyrene with N-hydroxyethyl-2-oxazolidone which was prepared by the reaction of 2-oxazolidone with ethylenecarbonate. Homopolymerization of OS and OES afforded mainly gelled polymers, but also soluble polymers on high dilution. In the copolymerization with styrene derivatives, an alternating nature was suggested from the copolymerization parameters obtained by either the nonlinear least-squares analysis method or the Fineman–Ross method. The alternating copolymerizability decreased in the following order: MHS > PMS > St. Q?e values of OS and OES were calculated and demonstrated that OS and OES behaved as stronger electron-accepting monomers in the copolymerization with MHS than in those with St and PMS. The copolymerization behavior of OS (OES) with MHS was compared with those of 4-(2-oxo-1-pyrrolidinyl)methylstyrene (PS) and 4-[2-(2-oxo-1-pyrrolidinyl)ethoxy]methylstyrene (PES). From an IR study examining the shift of carbonyl absorption by addition of MHS, the interaction which contributed to the increase of the alternating copolymerizability in the copolymerization of OS (OES) with MHS was concluded to be based on hydrogen bonding. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Some kinetic studies were made of the homopolymerization of o-hydroxystyrene and its copolymerization behavior with styrene and methyl methacrylate in tetrahydrofuran using azobisisobutyronitrile as initiator were done. The rate of polymerization experimentally obtained is given by Rp = K[M][I]0.72. Accordingly, it is likely that the growing chain radicals are terminated not only by mutual termination but also by a chain-transfer mechanism, the latter occupying a considerable portion. The latter is mostly attributed to the transfer to monomer, i.e., Cm for o-hydroxystyrene was 1.3 × 10?2. Some transfer mechanisms were assumed, although it is difficult to elucidate the mechanism in detail, owing to its complexity. Effects of solvent on the rate of polymerization were examined, dioxane, methyl ethyl ketone, ethanol, and tetrahydrofuran being used. However, no differences were found among the solvents. The apparent activation energy of polymerization was found to be 21.5 kcal./mole. Monomer reactivity ratios and Alfrey-Price Q–e values for o-hydroxystyrene were determined. The Q–e values (Q = 1.41, e = ?1.13) are rather similar to those of p-methoxystyrene. Thus, the e value for o-hydroxystyrene is more negative than that for styrene.  相似文献   

18.
Copolymers of 2-hydroxyethyl acrylate, hydroxypropyl acrylate, and 2(1-aziridinyl)-ethyl methacrylate (M2) with styrene (M1) were prepared in benzene solution at 60°C. Benzoyl peroxide, 0.1–0.2 mole-%, was used as initiator. Copolymer samples with the molar concentrations of M2 feed ranging from 0.10 to 0.85 were used to determine the reactivity ratios. Elemental analysis and nuclear magnetic resonance spectroscopy (NMR) were used to determine copolymer compositions. There was a solubility problem when the latter technique was applied. When samples which were completely soluble were analyzed, the results obtained from NMR and elemental analysis were in excellent agreement. The monomer reactivity ratios and the corresponding parameters for the copolymerization of (M1) with 2-hydroxyethyl acrylate are: r1 = 0.38 ± 0.02, r2 = 0.34 ± 0.03; Q2 = 0.85, e2 = 0.64; with hydroxypropyl acrylate are: r1 = 0.45 ± 0.03, r2 = 0.36 ± 0.03; Q2 = 0.75, e2 = 0.56; with 2(1-aziridinyl)ethyl methacrylate are: r1 = 0.53 ± 0.02, r2 = 0.63 ± 0.04; Q2 = 0.82, e2 = 0.25.  相似文献   

19.
The free‐radical homopolymerization and copolymerization behavior of N‐(2‐methylene‐3‐butenoyl)piperidine was investigated. When the monomer was heated in bulk at 60 °C for 25 h without an initiator, about 30% of the monomer was consumed by the thermal polymerization and the Diels–Alder reaction. No such side reaction was observed when the polymerization was carried out in a benzene solution with 1 mol % 2,2′‐azobisisobutylonitrile (AIBN) as an initiator. The polymerization rate equation was found to be Rp ∝ [AIBN]0.507[M]1.04, and the overall activation energy of polymerization was calculated to be 89.5 kJ/mol. The microstructure of the resulting polymer was exclusively a 1,4‐structure that included both 1,4‐E and 1,4‐Z configurations. The copolymerizations of this monomer with styrene and/or chloroprene as comonomers were carried out in benzene solutions at 60 °C with AIBN as an initiator. In the copolymerization with styrene, the monomer reactivity ratios were r1 = 6.10 and r2 = 0.03, and the Q and e values were calculated to be 10.8 and 0.45, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1545–1552, 2003  相似文献   

20.
A novel type of optically active N-[4-N′-(α-methylbenzyl)aminocarbonylphenyl]maleimide [(R)-MBCP] was synthesized from maleic anhydride, p-aminobenzoic acid, and (R)-methylbenzylamine. Radical homopolymerization of (R)-MBCP was performed in tetrahydrofuran (THF) at 50 and 70°C for 24 h to give optically active polymers having [α]25D = -141° and -129°, respectively. Anionic polymerization of (R)-MBCP with n-butyllithium in THF and N,N-dimethylformamide gave an optically active polymer having ?78 to ?81° of [α]25D. Radical copolymerizations of (R)-MBCP (M1) were performed with styrene (ST, M2) and methyl methacrylate (MMA, M2) in THF at 50°C. The monomer reactivity ratios (r1, r2) and the Alfrey-Price Q-e values were determined as follows: r1 = 0.009, r2 = 0.091, Q1 = 1.30, e1 = 1.87 in the (R)-MBCP-ST; r1 = 0.27, r2 = 1.21, Q1 = 0.93, e1 = 1.46 in the (R)-MBCP-MMA system. Chiroptical properties of the polymers were also investigated. © 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号