首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidation of the cyclohexadienyl complex Fe(η5-C5H5)(1-5-75-6-exo-C5H5-C6H6) (2) by (Ph3C)PF6 (CH2Cl2, from −30 to +20 °C) occurs as two concurrent processes: elimination of an H atom from the cyclohexadienyl ligand and replacement of an H atom in the cyclopentadienyl ring by a CPh3 fragment. A mixture of cationic complexes [Fe(η5-C5H5) (η6-Ph-C5H5]+ (1+) and [Fe(η5-C5H4CPh3) (η6-Ph-C5H5]+ (4+) (4 +) with PF6 anions is obtained. Deprotonation of the mixture of 1+ and 4+ complexes under the action of Bu t OK inm-xylene followed by boiling of the reaction mixture gives phenylferrocene (7) as the product of η66 haptotropic rearrangement. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, NO. 5, pp. 1045–1047, May, 1997.  相似文献   

2.
On treatment with sodium alkoxides in the corresponding alcohols, [2-iodo-3-(perfluoroalkyl)propyl]glycidyl ethers are converted into 3-alkoxy-1-[3-(perfluoroalkyl)prop-2-enyloxy]-propan-2-ols in 56–78% yields, while its reaction with 2,2,2-trifluoroethanol and phenol under phase transfer conditions (NaOH, CH2Cl2-H2O, Bu4N+I, 35–40 °C) gives 3-alkoxy1-[2-iodo-3-(perfluoroalkyl)propoxy]propan-2-ols (yields 45–72%).  相似文献   

3.
The complex species formed in aqueous solutions (25 °C, I=3.0 mol⋅dm−3 KCl ionic medium) between the V(III) cation and the ligands 6-methylpicolinic acid (MePic, HL), salicylic acid (H2Sal, H2L) and phthalic acid (H2Phtha, H2L) have been studied by potentiometric and spectrophotometric measurements. Application of the least-squares computer program LETAGROP to the experimental emf(H) data, taking into account the hydrolytic species and hydrolysis constants of V(III), indicates that under the employed experimental conditions the complexes [VL]2+, [V(OH)L]+, [V(OH)2L], [V(OH)3L], [VL2]+, [VL3] and [V2OL4] form in the vanadium(III)–MePic system. Were observed the complexes [VL]+, [VL2], [V(OH)L2]2− and [VL3]3− in the vanadium(III)–H2Sal system, and the species [VHL]2+, [VL]+, [V(OH)L], [VHL2], [VL2], [V(OH)L2]2−, [V(OH)2L2]3− and [VL3]3− in the vanadium(III)–H2Phtha system. The stability constants of these complexes were determined by potentiometric measurements, and spectrophotometric measurements were made in order to perform a qualitative characterization of the complexes formed in aqueous solution.  相似文献   

4.
The reactions of phosphine derivatives of diallyl isocyanurates with palladium(ii) dichloride lead to the formation of complexes, whose structure, composition, and stability depend on the length of the methylene chain between the isocyanurate and diphenylphosphine fragments in the ligand. 1,3-Diallyl-5-[5′-(diphenylphosphino)pentyl and 10′-(diphenyl-phosphino)decyl] isocyanurates with PdCl2 form monomeric L2PdCl2 trans-complexes in which P atoms of the ligands participate in coordination with the metal. 1,3-Diallyl-5-[2′-(diphenylphosphino)ethyl] isocyanurate with PdCl2 forms a dimeric (LPdCl2)2 complex, which decomposes in a solution to the monomer including solvent molecule into the coordination sphere of the metal. The reactions of 1,3-diallyl-5-[4′-(diphenylphosphino)butyl] isocyanurate and 1,3-diallyl-5-[6′-(diphenylphosphino)hexyl] isocyanurate with PdCl2 give monomeric chelate LPdCl2 complexes in which one of the allyl groups of the isocyanurate cycle participates in coordination with the central ion along with the phosphorus atom. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1859–1865, September, 1998.  相似文献   

5.
2-(5-Benzoacridine)ethyl-p-toluenesulfonate (BAETS), a dual-sensitive probe, was reacted with bile acids in the presence of K2CO3 catalyst in dimethyl sulfoxide (DMSO) solvent to give BAETS–bile acid derivatives. Derivatives exhibited intense fluorescence (FL) with an excitation maximum at λ ex 270 nm and an emission maximum at λ em 510 nm. MS analysis using APCI-MS indicated that derivatives had excellent APCI-MS ionizability with percentage ionization δ values changing from 0 to 88.83% in aqueous acetonitrile and from 0 to 89.15% in aqueous methanol. The collision induced dissociation spectra of m/z [M + H]+ contained specific fragment ions at m/z [M + H−H2O]+, [M + H−2H2O]+, [M + H−3H2O]+, 347.3, and 290.1. Repeatability was good for LC separation of BAETS–bile acid derivatives with aqueous acetonitrile as mobile phase. The relative standard deviations (RSDs) of retention time and peak area at 6.6 nmol mL−1 levels with fluorescence detection (FL) were from 0.045 to 0.072% and from 2.16 to 2.73%, respectively. Excellent linear responses were observed, with regression coefficients >0.9995. The FL detection limits (S/N = 3) were in the range of 18.0–36.1 fmol. The online APCI-MS detection limits are in the range of 500–790 fmol (at a signal-to-noise ratio of 3).  相似文献   

6.
The gold(III) 1,3-diaminopropane complex [Au(1,3-pn)(1,3-pn-H)]Cl2 has been synthesized. Its dissociation constant has been determined: Au(1,3-pn)23+ = Au(1,3-pn-H)2+ + H+, logK a1 = −7.03 ± 0.05 (I = 0.1 mol/L NaClO4). Considerable spectral changes are observed for strong alkali solutions (pH 11–14) containing the monoamido forms of the gold(III) ethylenediamine, 1,3-diaminopropane, and diethylenetriamine complexes (Au(en)(en-H)2+, Au(1,3-pn)(1,3-pn-H)2+, Au(dien-H)OH+). These changes are attributed to the formation of the diamido species Au(en-H)2+, Au(1,3-pn-H)2+, and Au(dien-2H)OH0. The dissociation constants of the monoamido complexes have been determined: Au(en)(en-H)2+ (logK a2 = −10.9 ± 0.1 at I = 0.001–0.01 mol/L NaCl); Au(1,3-pn)(1,3-pn-H)2+ (logK a2 = −11.3 ± 0.1 at I = 0.1 mol/L NaCl); Au(dien-H)OH+ (logK a2 = −12.4 ± 0.1 at I = 0.1 mol/L NaCl).  相似文献   

7.
The Knoevenagel condensations of 5-[3-(trifluoromethyl)phenyl]furan-2-carbaldehyde with seven compounds containing an active methyl or methylene group have been studied. The compounds used were: methyl 2-cyanoacetate, malononitrile, 2-furylacetonitrile, acetophenone, 2-thioxo-1,3-thiazolidin-4-one (rhodanine), 5,5-dimethylcyclohexane-1,3-dione (dimedone), and methyl 2-azidoacetate. The effect of microwave irradiation on the condensation reactions was studied and compared with “’classical”’ conditions. Thermolysis of methyl 2-azido-3-{5-[3-(trifluoromethyl)phenyl]-2-furyl}propenoate afforded methyl 2-[3-(trifluoromethyl)phenyl)]-4H-furo[3,2-b]pyrrole-5-carboxylate. (2E)-3-{ 5-[3-(Trifluoromethyl)phenyl]-2-furyl}propenoic acid was converted to the corresponding azide, which was cyclized on heating into 2-[3-(trifluoromethyl)phenyl)]-4,5-dihydrofuro[3,2-c]pyridin-4-one. The latter after successive action of POCl3 and NH2NH2-Pd/C gave 2-[3-(trifluoromethyl)-phenyl]furo[3,2-c]pyridine. Published in Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 825–831, June, 2006.  相似文献   

8.
The kinetics of the electron-transfer reactions between promazine (ptz) and [Co(en)2(H2O)2]3+ in CF3SO3H solution ([CoIII] = (2–6) × 10−3 m, [ptz] = 2.5 × 10−4 m, [H+] = 0.02 − 0.05 m, I = 0.1 m (H+, K+, CF3SO 3 ), T = 288–308 K) and [Co(edta)] in aqueous HCl ([CoIII] = (1 − 4) × 10−3 m, [ptz] = 1 × 10−4 m, [H+] = 0.1 − 0.5 m, I = 1.0 m (H+, Na+, Cl), T = 313 − 333 K) were studied under the condition of excess CoIII using u.v.–vis. spectroscopy. The reactions produce a CoII species and a stable cationic radical. A linear dependence of the pseudo-first-order rate constant (k obs) on [CoIII] with a non-zero intercept was established for both redox processes. The rate of reaction with the [Co(en)2(H2O)2]3+ ion was found to be independent of [H+]. In the case of the [Co(edta)] ion, the k obs dependence on [H+] was linear and the increasing [H+] accelerates the rate of the outer-sphere electron-transfer reaction. The activation parameters were calculated as follows: ΔH = 105 ± 4 kJ mol−1, ΔS = 93 ± 11 J K−1mol−1 for [Co(en)2(H2O)2]3+; ΔH = 67 ± 9 kJ mol−1, ΔS = − 54 ± 28 J K−1mol−1 for [Co(edta)].  相似文献   

9.
Single crystal X-ray diffraction is used to determine the crystal and molecular structure of 4-trifluoro-2-[2-(4-fluorophenyl)hydrazine-1-ylidene]-1-(thiophen-2-yl)butane-1,3-dione. Crystallographic data for C14H8F4N2O2S are as follows: a = 8.2723(6) ?, b = 9.3009(7) ?, c = 9.9895(7) ?; α = 79.224(2)°, β = 75.851(2)°, γ = 72.337(2)°. Triclinic crystal system, P-1 space group, d x = 1.622 g/cm3, V = 704.83(9) ?3, μ = 0.286 mm−1, crystal size 0.30×0.20×0.20 mm, R1 = 0.0891, wR2 = 0.1989.  相似文献   

10.
Radical-ion salts bis(biphenyl)chromium(i) 1,4-di(2-cyanoisopropyl)-1,4-dihydrofulleride [(Ph2)2Cr][1,4-(CMe2CN)2C60]−· and bis(biphenyl)chromium(i) 1-(2-cyanoisopropyl)-1,2-dihydrofulleride [(Ph2)2Cr][1,2-(CMe2CN)(H)C60]−·, the salt bis(biphenyl)chromium(i) (2-cyanoisopropyl)fulleride [(Ph2)2Cr][(CMe2CN)C60], and neutral 1-(2-cyanoisopropyl)-1,2-dihydrofullerene 1,2-(CMe2CN)(H)C60 have been synthesized for the first time. The compounds [(Ph2)2Cr][1,4-(CMe2CN)2C60]−· and [(Ph2)2Cr][1,2-(CMe2CN)(H)C60]−· decompose in THF to form [(Ph2)2Cr][(CMe2CN)C60], whose protonation affords 1,2-(CMe2CN)(H)C60. 1,4-Di(2-cyanoisopropyl)-1,4-dihydrofullerene 1,4-(CMe2CN)2C60 and 1,2-(CMe2CN)(H)C60 are stable in vacuo up to 513 K. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1935–1939, September, 2008.  相似文献   

11.
The stoichiometries, kinetics and mechanism of the reduction of tetraoxoiodate(VII) ion, IO4 to the corresponding trioxoiodate(V) ion, IO3 by n-(2-hydroxylethyl)ethylenediaminetriacetatocobaltate(II) ion, [CoHEDTAOH2] have been studied in aqueous media at 28 °C, I = 0.50 mol dm−3 (NaClO4) and [H+] = 7.0 × 10−3 mol dm−3. The reaction is first order in [Oxidant] and [Reductant], and the rate is inversely dependent on H+ concentration in the range 5.00 × 10−3 ≤ H+≤ 20.00 × 10−3 mol dm−3 studied. A plot of acid rate constant versus [H+]−1 was linear with intercept. The rate law for the reaction is:
- \frac[ \textCoHEDTAOH2 - ]\textdt = ( a + b[ \textH + ] - 1 )[ \textCoHEDTAOH2 - ][ \textIO4 - ] - {\frac{{\left[ {{\text{CoHEDTAOH}}_{2}^{ - } } \right]}}{{{\text{d}}t}}} = \left( {a + b\left[ {{\text{H}}^{ + } } \right]^{ - 1} } \right)\left[ {{\text{CoHEDTAOH}}_{2}^{ - } } \right]\left[ {{\text{IO}}_{4}^{ - } } \right]  相似文献   

12.
Efficient syntheses of novel 10-aryl-5a-(arylamino)-9-hydroxy-5a,6,7,8-tetrahydroindeno[1,2-b]chromen-11(10H)-one derivatives has been reported by [4+2] cycloaddition reactions of electron-deficient 2-(arylmethylene)-1H-indene-1,3(2H)-dione heterodienes with electron-rich enaminones in [bmim]BF4 at 80?°C and in acetic acid at 80?°C. Dimedone/cyclohexane-1,3-dione enaminones have been used as dienophiles in Inverse Electron Demand hetero-Diels-Alder reactions. The products were obtained in high yields by a simple work up.  相似文献   

13.
The octahedral complex, [CoIII(HL)]·9H2O (H4L = (1,8)-bis(2-hydroxybenzamido)-3,6-diazaoctane) incorporating bis carboxamido-N-, bis sec-NH, phenolate, and phenol coordination has been synthesized and characterized by analytical, NMR (1H, 13C), e.s.i.-Mass, UV–vis, i.r., and Raman spectroscopy. The formation of the complex has also been confirmed by its single crystal X-ray structure. The cyclic voltammetry of the sample in DMF ([TEAP] = 0.1 mol dm−3, TEAP = tetraethylammonium perchlorate) displayed irreversible redox processes, [CoIII(HL)] → [CoIV(HL)]+ and [CoIII(HL)] → [CoII(HL)] at 0.41 and −1.09 V (versus SCE), respectively. A slow and H+ mediated isomerisation was observed for the protonated complex, [CoIII(H2L)]+ (pK = 3.5, 25 °C, I = 0.5 mol dm−3). H2Asc was an efficient reductant for the complex and the reaction involved outer sphere mechanism; the propensity of different species for intra molecular reduction followed the sequence: [{[CoIII(HL)],(H2Asc)}–H] <<< {[CoIII(H2L)],(H2Asc)}+ < {[CoIII(HL)],(H2Asc)}. A low value (ca. 3.7 × 10−10 dm3 mol−1 s−1, 25 °C, I = 0.5 mol dm−3) for the self exchange rate constant of the couple [CoIII(HL)]/[CoII(HL)] indicated that the ligand HL3− with amido (N-) donor offers substantial stability to the CoIII state. HSO3 and [CoIII(HL)] formed an outer sphere complex {[CoIII(HL)],(HSO3)}, which was slowly transformed to an inner sphere S-bonded sulfito complex, [CoIII(H2L)(HSO3)] and the latter was inert to reduction by external sulfite but underwent intramolecular SIV → CoIII electron transfer very slowly. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
New radical cation salts based on 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP) with copper(II) metal complex anions, β-(BDA-TTP)4Cu2Cl6 and (BDA-TTP)2CuCl4, were synthesized and structurally characterized. Single crystals were prepared by electrochemical oxidation of BDA-TTP under galvanostatic conditions. X-ray diffraction study demonstrated that the salts have a layered structure, in which the conducting BDA-TTP layers alternate with the [Cu2Cl6]2− or [CuCl4]2− anions. Both salts show the semiconductor-type temperature dependence of the conductivity. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 48–54, January, 2007.  相似文献   

15.
The extraction of HCl, HBr, HNO3, HClO4, H2SO4 and CH3COOH into solutions of 4-(5-nonyl)pyridine (NPy) and 2-hexylpyridine (HPy) dissolved in benzene has been studied. The results show that the larger, less basic anions extract better (ClO 4 >CH3COO≥NO 3 >Br>Cl>HSO 4 ) due to their low aqueous hydration. The ionization constants of NPyH+ and HPyH+ as determined spectrophotometrically were found to be 5.97±0.06 and 5.94±0.05, respectively, at 25°C.  相似文献   

16.
The reductions of [Co(CN)5NO2]3−, [Co(NH3)5NO2]2+ and [Co(NH3)5ONO]2+, by TiIII in aqueous acidic solution have been studied spectrophotometrically. Kinetic studies were carried out using conventional techniques at an ionic strength of 1.0 mol dm−3 (LiCl/HCl) at 25.0 ± 0.1 °C and acid concentrations between 0.015 and 0.100 mol dm−3. The second-order rate constant is inverse—acid dependent and is described by the limiting rate law:- k2 ≈ k0 + k[H+]−1,where k=k′Ka and Ka is the hydrolytic equilibrium constant for [Ti(H2O)6]3+. Values of k0 obtained for [Co(CN)5NO2]3−, [Co(NH3)5NO2]2+ and [Co(NH3)5ONO]2+ are (1.31 ± 0.05) × 10−2 dm3 mol−1 s−1, (4.53 ± 0.08) × 10−2 dm3 mol−1 s−1 and (1.7 ± 0.08) × 10−2 dm3 mol−1 s−1 respectively, while the corresponding k′ values from reductions by TiOH2+ are 10.27 ± 0.45 dm3 mol−1 s−1, 14.99 ± 0.70 dm3 mol−1 s−1 and 17.93 ± 0.78 dm3 mol−1 s−1 respectively. Values of K a obtained for the three complexes lie in the range (1–2) × 10−3 mol dm−3 which suggest an outer-sphere mechanism.  相似文献   

17.
2-(5-Bromo-2-pyridylazo)-5-(diethylamino) phenol (Br-PADAP) forms a 1:1 complex with the uranyl ion in the presence of sulphosalicylic acid, which acts as stabilizer for this complex in the triethanol amine/perchloric acid buffer system. A change in the stoichiometry of the complex was seen at pH<5. Kinetic measurements were carried out using stopped-flow spectrophotometer in the presence of an excess concentration of U(VI) in the pH range 6.5 to 8. The dependence of the pseudo-first-order rate constant, k(obs), on the concentrations of U(VI), ligand and hydrogen ion showed that Br-PADAP reacts with UO2(OH)+ to form an intermediate species (equilibrium constant = 1.28×104mol.dm−3) that then rearranges (rate constant = 5.6×10−2s−1) to form the product species. UO2(OH)+ is present in equilibrium with the unreactive species UO2(OH)2, as well as with the unreactive sulfosalicylic acid complex.  相似文献   

18.
Protonation equilibrium has been studied for the acyclic gold(III) tetraaza metallocomplex [AuB]2+ [B = N, N′-bis(2-aminoethyl)-2,4-pentanediiminato(1−)] in aqueous solution. The synthetic procedure is described. The crystal and molecular structure of the protonated form of the [AuHB](H5O2)(ClO4)4 complex has been determined. Monoclinic crystals with unit cell dimensions a = 11.964(2) Å, b = 13.789(3) Å, c = 15.496(3) Å, β = 109.00(3)°, V = 2417.1(8) Å3, Z = 4, ρcalc = 2.243 g/cm3, space group P21/n. The structure is built of nearly planar [Au(C9H20N4)]3+ complex cations, (H5O2)+ cations, and [ClO4] anions. The gold atom coordinates four nitrogen atoms of the ligand, forming a square plane. The six-membered chelate ring of the ligand is protonated at the central β-carbon atom and contains imine C=N bonds. The oxygen atoms of the perchlorate ions are hydrogen bonded to the (H5O2)+ dihydroxonium ion and to the nitrogen atoms of the NH2 groups of the [AuHB]3+ cation. Original Russian Text Copyright ? 2005 by V. A. Afanasieva, L. A. Glinskaya, R. F. Klevtsova, and I. V. Mironov __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 5, pp. 909–915, September–October, 2005.  相似文献   

19.
The loss of X· radical from [M + Cu + X]+ ions (copper reduction) has been studied by the so called in-source fragmentation at higher cone voltage (M = crown ether molecule, X = counter ion, ClO4, NO3, Cl). The loss of X· has been found to be affected by the presence/lack of aromatic ring poor/rich in electrons. Namely, the loss of X· occurs with lower efficiency for the [NO2-B15C5 + Cu + X]+ ions than for the [B15C5 + Cu + X]+ ions, where NO2-B15C5 = 3-nitro-benzo-15-crown-5, B15C5 = benzo-15-crown-5. A reasonable explanation is that Anion-π interactions prevent the loss of X· from the [NO2-B15C5 + Cu + X]+ ions. The presence of the electron-withdrawing NO2 group causes the aromatic ring to be poor in electrons and thus its enhances its interactions with anions. For the ion containing the aromatic ring enriched in electrons, namely [NH2-B15C5 + Cu + ClO4]+ where NH2-B15C5 = 3-amino-benzo-15-crown-5, the opposite situation has been observed. Because of Anion-π repulsion the loss of X· radical proceeds more readily for [NH2-B15C5 + Cu + X]+ than for [B15C5 + Cu + X]+. Iron reduction has also been found to be affected by Anion-π interactions. Namely, the loss of CH3O· radical from the ion [B15C5 + Fe + NO3 + CH3O]+ proceeds more readily than from [NO2B15C5 + Fe + NO3 + CH3O]+.  相似文献   

20.
The interaction of (1,8)bis(2-hydroxybenzamido)3,6-diazaoctane (LH2) with iron(III) in acidic medium resulted in the formation of a mononuclear complex, Fe(LH3)4+ which further yielded, [Fe(LH2)]3+, [Fe(LH)]2+, and [FeL]+ due to protolytic equilibria. The formation of [Fe(LH3)]4+ was investigated under varying [H+]T (0.01–0.10 mol dm−3) and [Fe3+]T (1.00 × 10−3–1.70 × 10−2, [L]T = 1.0 × 10−4 mol dm−3) (I = 0.3 mol dm−3, 10% MeOH + H2O, 25.0 °C). The reaction was reversible and displayed monophasic kinetics; the dominant path involved Fe(OH)(OH2) 5 2+ and LH 4 2+ . The mechanism is essentially a dissociative interchange (I d) and the dissociation of the aqua ligand from the encounter complex, [Fe(OH2)5OH2+, H4L2+] is rate limiting. The ligand binds iron(III) in a bidentate ([Fe(H3L)]4+), tetradentate ([Fe(H2L)]3+), pentadentate ([Fe(HL)]2+) and hexadentate fashion ([FeL]+) under varying pH conditions. Iron(III) promoted deprotonation of the amide and phenol moieties and chelation driven deprotonation of the sec-NH 2 + of the trien spacer unit are in tune with the above proposition. The mixed ligand complexes, [FeIII(LH)(X)] (X = N 3 , NCS, ACO) are also reversibly formed in solution thus indicating that there is a replaceable aqua ligand in the complex conforming to its octahedral coordination, [Fe(LH)(OH2)]2+, the bound ligand is protonated at the sec-NH site. Despite the multidentate nature of the ligand the FeIII complexes are prone to reduction by sulfur(IV) and ascorbic acid. The redox reactions of different iron(III) species, FeIII(LHi) which involved ternary complex formation with the reductants have been investigated kinetically as a function of pH, [SIV]T and [ascorbic acid]T. The substantial pK perturbation of the bound ascorbate in [Fe(LH)(HAsc/Asc)]+/0 (ΔpK {[Fe(LH)(HAsc)] − HAsc − } > 6) is considered to be compelling evidence for chelation of HAsc/Asc2− leading to hepta coordination of iron(III) in the ascorbate complexes. A novel binuclear complex with composition, [FeIII 2C20N4H35O11 (NO3)] has been synthesized and characterized by i.r., u.v.–vis, e.s.r., e.s.i.-Mass, 57Fe Mossbauer spectroscopy and magnetic moment measurements. The complex was isolated as a mixture of two forms C 1 and C 2 with 75.3 and 24.7%, respectively as computed from Mossbauer data. The isomer shift (δ) (quadrupole splitting, ΔE Q) are 0.32 mm s−1 (0.75 mm s−1) and 0.19 mm s−1 (0.68 mm s−1) for C 1 and C 2, respectively. The variable temperature magnetic moment measurements (10–300 K) of the sample showed that C 1 is an oxo dimer exhibiting antiferromagnetic interaction between the iron(III) atoms (S 1 = S 2 = 5/2, J = − 120 cm−1) while the dimer C 2 is a high spin species (S 1 = S 2 = 5/2) and exhibits normal paramagnetism obeying the Curie law. The cyclic voltametry response of the sample (DMF, [TEAP] = 0.1 mol dm−3) displayed quasi-reversible responses at − 0.577 V and − 1.451 V (versus SCE). This is in tune with the fact that the C 2 species reverts rapidly in solution to the relatively more stable oxo-bridged dimer (C 1) which is reduced in two sequential steps: C1 + e → [FeL]+ + FeII; [FeL]+ + e → FeIIL, the high labilility of the FeII complex is attributed to the irreversibility. The X-band e.s.r. spectrum of the polycrystalline sample at room temperature displayed a weak (unresolved) band at g = 4.2 and a strong band at g = 2.0 with hyperfine splitting due to the coordinated nitrogen (I = 1). At 77 K the band at g = 4.2 is intensified while that at g = 2 is broadened to the extent of near disappearance in agreement with the presence of the exchange coupled iron(III) centres. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. An erratum to this article is available at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号