首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Generalizing results by J. Ford, J. W. Rogers, Jr. and H. Kato we prove that (1) a map f from a G-like continuum onto a graph G is refinable iff f is monotone; (2) a graph G is an arc or a simple closed curve iff every G-like continuum that contains no nonboundary indecomposable subcontinuum admits a monotone map onto G.We prove that if bonding maps in the inverse sequence of compact spaces are refinable then the projections of the inverse limit onto factor spaces are refinable. We use this fact to show that refinable maps do not preserve completely regular or totally regular continua.  相似文献   

2.
Extension dimension is characterized in terms of -maps. We apply this result to prove that extension dimension is preserved by refinable maps between metrizable spaces. It is also shown that refinable maps preserve some infinite-dimensional properties.  相似文献   

3.
It has long been known that hyper-real maps preserve realcompactness. In this paper we show that hyper-real maps preserve nearly realcompactness as well. We will also introduce the concepts of ε-perfect maps and f-normal spaces and explore them in a way that mirrors Rayburn's 1978 study of δ-perfect maps and h-normal spaces.  相似文献   

4.
Hurewicz characterized the dimension of separable metrizable spaces by means of finite-to-one maps. We investigate whether this characterization also holds in the class of compact F-spaces of weight c. Our main result is that, assuming the Continuum Hypothesis, an n-dimensional compact F-space of weight c is the continuous image of a zero-dimensional compact Hausdorff space by an at most n2-to-1 map.  相似文献   

5.
We extend the Nielsen theory of coincidence sets to equalizer sets, the points where a given set of (more than 2) mappings agree. On manifolds, this theory is interesting only for maps between spaces of different dimension, and our results hold for sets of k maps on compact manifolds from dimension (k−1)n to dimension n. We define the Nielsen equalizer number, which is a lower bound for the minimal number of equalizer points when the maps are changed by homotopies, and is in fact equal to this minimal number when the domain manifold is not a surface.As an application we give some results in Nielsen coincidence theory with positive codimension. This includes a complete computation of the geometric Nielsen number for maps between tori.  相似文献   

6.
We introduce a general method of resolving first countable, compact spaces that allows accurate estimate of inductive dimensions. We apply this method to construct, inter alia, for each ordinal number α>1 of cardinality ?c, a rigid, first countable, non-metrizable continuum Sα with . Sα is the increment in some compactification of [0,1) and admits a fully closed, ring-like map onto a metric continuum. Moreover, every subcontinuum of Sα is separable. Additionally, Sα can be constructed so as to be: (1) a hereditarily indecomposable Anderson-Choquet continuum with covering dimension a given natural number n, provided α>n, (2) a hereditarily decomposable and chainable weak Cook continuum, (3) a hereditarily decomposable and chainable Cook continuum, provided α is countable, (4) a hereditarily indecomposable Cook continuum with covering dimension one, or (5) a Cook continuum with covering dimension two, provided α>2.We also produce a chainable and hereditarily decomposable space Sω(c+) with , , trind0Sω(c+) and trInd0Sω(c+) all equal to ω(c+), the first ordinal of cardinality c+.  相似文献   

7.
R. Pol has shown that for every countable ordinal number α there exists a universal space for separable metrizable spaces X with trindX?α. W. Olszewski has shown that for every countable limit ordinal number λ there is no universal space for separable metrizable space with trIndX?λ. T. Radul and M. Zarichnyi have proved that for every countable limit ordinal number there is no universal space for separable metrizable spaces with dimWX?α where dimW is a transfinite extension of covering dimension introduced by P. Borst. We prove the same result for another transfinite extension dimC of the covering dimension.As an application, we show that there is no absorbing sets (in the sense of Bestvina and Mogilski) for the classes of spaces X with dimCX?α belonging to some absolute Borel class.  相似文献   

8.
In [V.V. Fedorchuk, Questions on weakly infinite-dimensional spaces, in: E.M. Pearl (Ed.), Open Problems in Topology II, Elsevier, Amsterdam, 2007, pp. 637-645; V.V. Fedorchuk, Weakly infinite-dimensional spaces, Russian Math. Surveys 42 (2) (2007) 1-52] classes w-m-C of weakly infinite-dimensional spaces, 2?m?∞, were introduced. We prove that all of them coincide with the class wid of all weakly infinite-dimensional spaces in the Alexandroff sense. We show also that transfinite dimensions dimwm, introduced in [V.V. Fedorchuk, Questions on weakly infinite-dimensional spaces, in: E.M. Pearl (Ed.), Open Problems in Topology II, Elsevier, Amsterdam, 2007, pp. 637-645; V.V. Fedorchuk, Weakly infinite-dimensional spaces, Russian Math. Surveys 42 (2) (2007) 1-52], coincide with dimension dimw2=dim, where dim is the transfinite dimension invented by Borst [P. Borst, Classification of weakly infinite-dimensional spaces. I. A transfinite extension of the covering dimension, Fund. Math. 130 (1) (1988) 1-25]. Some topological games which are related to countable-dimensional spaces, to C-spaces, and some other subclasses of weakly infinite-dimensional spaces are discussed.  相似文献   

9.
It is shown that the space Cp(τω) is a D-space for any ordinal number τ, where . This conclusion gives a positive answer to R.Z. Buzyakova's question. We also prove that another special example of Lindelöf space is a D-space. We discuss the D-property of spaces with point-countable weak bases. We prove that if a space X has a point-countable weak base, then X is a D-space. By this conclusion and one of T. Hoshina's conclusion, we have that if X is a countably compact space with a point-countable weak base, then X is a compact metrizable space. In the last part, we show that if a space X is a finite union of θ-refinable spaces, then X is a αD-space.  相似文献   

10.
In this paper, we shall investigate the symmetry property of a multivariate orthogonal M-refinable function with a general dilation matrix M. For an orthogonal M-refinable function such that is symmetric about a point (centro-symmetric) and provides the approximation order k, we show that must be an orthogonal M-refinable function that generates a generalized coiflet of order k. Next, we show that there does not exist a real-valued compactly supported orthogonal 2Is-refinable function in any dimension such that is symmetric about a point and generates a classical coiflet. Finally, we prove that if a real-valued compactly supported orthogonal dyadic refinable function L2(Rs) has the axis symmetry, then cannot be a continuous function and can provide the approximation order at most one. The results in this paper may provide a better picture about symmetric multivariate orthogonal refinable functions. In particular, one of the results in this paper settles a conjecture in [D. Stanhill, Y.Y. Zeevi, IEEE Trans. Signal Process. 46 (1998), 183–190] about symmetric orthogonal dyadic refinable functions.  相似文献   

11.
We prove that a Hausdorff space X is very I-favorable if and only if X is the almost limit space of a σ-complete inverse system consisting of (not necessarily Hausdorff) second countable spaces and surjective d-open bonding maps. It is also shown that the class of Tychonoff very I-favorable spaces with respect to the co-zero sets coincides with the d-openly generated spaces.  相似文献   

12.
We introduce a new cardinal invariant, core of a space, defined for any locally compact Hausdorff space X and denoted by cor(X). Locally compact spaces of countable core generalize locally compact σ-compact spaces in a way that is slightly exotic, but still quite natural. We show in Section 1 that under a broad range of conditions locally compact spaces of countable core must be σ-compact. In particular, normal locally compact spaces of countable core and realcompact locally compact spaces of countable core are σ-compact. Perfect mappings preserve the class of spaces of countable core in both directions (Section 2). The Alexandroff compactification aX is weakly first countable at the Alexandroff point a if and only if cor(X)=ω (Section 3). Two examples of non-σ-compact locally compact spaces of countable core are discussed in Section 3. We also extend the well-known theorem of Alexandroff and Urysohn on the cardinality of perfectly normal compacta to compacta satisfying a weak version of perfect normality. Several open problems are formulated.  相似文献   

13.
In [M.H. Escardo, J. Lawson, A. Simpson, Comparing cartesian closed categories of (core) compactly generated spaces, Topology Appl. 143 (2004) 105-145] it is shown that in the set C(Nω,N) of all continuous maps of Nω into N, where N is an infinitely countable discrete topological space, the compact-open topology is not the finest splitting topology. Since Nω is consonant (see [S. Dolecki, G.H. Greco, A. Lechicki, When do the upper Kuratowski topology (homeomorphically, Scott topology) and the co-compact topology coincide? Trans. Amer. Math. Soc. 347 (1995) 2869-2884]) the Isbell topology on C(Nω,N) also is not the finest splitting topology. This result is generalized in the present paper proving that it is true also for spaces having the so-called Specific Extension Property. The following spaces have the Specific Extension Property: (a) infinitely countable free unions of non-empty spaces, (b) non-compact Lindelöf zero-dimensional spaces, and (c) metric locally convex linear spaces. In particular, we prove that on the set of all real-valued functions on the (separable infinite dimensional) Hilbert space the compact-open topology does not coincide with the finest splitting topology.  相似文献   

14.
We explore the relation between two general kinds of separation properties. The first kind, which includes the classical separation properties of regularity and normality, has to do with expanding two disjoint closed sets, or dense subsets of each, to disjoint open sets. The second kind has to do with expanding discrete collections of points, or full-cardinality subcollections thereof, to disjoint or discrete collections of open sets. The properties of being collectionwise Hausdorff (cwH), of being strongly cwH, and of being wD(1), fall into the second category. We study the effect on other separation properties if these properties are assumed to hold hereditarily. In the case of scattered spaces, we show that (a) the hereditarily cwH ones are α-normal and (b) a regular one is hereditarily strongly cwH iff it is hereditarily cwH and hereditarily β-normal. Examples are given in ZFC of (1) hereditarily strongly cwH spaces which fail to be regular, including one that also fails to be α-normal; (2) hereditarily strongly cwH regular spaces which fail to be normal and even, in one case, to be β-normal; (3) hereditarily cwH spaces which fail to be α-normal. We characterize those regular spaces X such that X×(ω+1) is hereditarily strongly cwH and, as a corollary, obtain a consistent example of a locally compact, first countable, hereditarily strongly cwH, non-normal space. The ZFC-independence of several statements involving the hereditarily wD(1) property is established. In particular, several purely topological statements involving this property are shown to be equivalent to b=ω1.  相似文献   

15.
The main result shows that the class of spaces with a δθ-base is invariant under perfect mappings. By using related techniques it is also shown that the class of weakly θ-refinable spaces is preserved by perfect images.  相似文献   

16.
On the surface, the definitions of chainability and Lebesgue covering dimension ?1 are quite similar as covering properties. Using the ultracoproduct construction for compact Hausdorff spaces, we explore the assertion that the similarity is only skin deep. In the case of dimension, there is a theorem of E. Hemmingsen that gives us a first-order lattice-theoretic characterization. We show that no such characterization is possible for chainability, by proving that if κ is any infinite cardinal and A is a lattice base for a nondegenerate continuum, then A is elementarily equivalent to a lattice base for a continuum Y, of weight κ, such that Y has a 3-set open cover admitting no chain open refinement.  相似文献   

17.
Conditions on a topological space X under which the space C(X,R) of continuous real-valued maps with the Isbell topology κ is a topological group (topological vector space) are investigated. It is proved that the addition is jointly continuous at the zero function in Cκ(X,R) if and only if X is infraconsonant. This property is (formally) weaker than consonance, which implies that the Isbell and the compact-open topologies coincide. It is shown the translations are continuous in Cκ(X,R) if and only if the Isbell topology coincides with the fine Isbell topology. It is proved that these topologies coincide if X is prime (that is, with at most one non-isolated point), but do not even for some sums of two consonant prime spaces.  相似文献   

18.
Let CSK be the class of all K-scattered spaces having countable ranks. It is shown in this paper that if X is a regular θ-refinable space, then player one has a winning strategy in G(DK,X) if and only if he has one in G(CSK,X). This partly answers Y. Yajima's problem: By topological games, I prove that hereditary disconnectedness, zero-dimensionality and strong zero-dimensionality are equivalent in the realm of non-empty normal compact-scattered weak θ-refinable spaces. A collectionwise normal ultraparacompact-like space is an ultraparacompact space.  相似文献   

19.
We construct a path-connected homogeneous compactum with cellularity c that is not homeomorphic to any product of dyadic compacta and first countable compacta. We also prove some closure properties for classes of spaces defined by various connectifiability conditions. One application is that every infinite product of infinite topological sums of Ti spaces has a Ti pathwise connectification, where i∈{1,2,3,3.5}.  相似文献   

20.
We prove that any product of quotient maps in the category of quasi-uniform spaces and quasi-uniformly continuous maps is a quotient map. We also show that a quasi-uniformly continuous map from a product of quasi-uniform spaces into a quasi-pseudometric T0-space depends on countably many coordinates.Furthermore we characterize those quasi-uniformities that are unique in their quasi-proximity class and prove that this property is preserved under arbitrary products in the category of quasi-uniform spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号