首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the generation of high average power, high repetition rate, and picosecond (ps) deep-ultraviolet (DUV) 177.3 nm laser. The DUV laser is produced by second-harmonic generation of a frequency-tripled mode-locked Nd: YVO4 laser (<15 ps, 80 MHz) with KBBF nonlinear crystal. The influence of different fundamental beam diameters on DUV output power and KBBF-SHG conversion efficiency are investigated. Under the 355 nm pump power of 7.5 W with beam diameter of 145 μm, 41 mW DUV output at 177.3 nm is obtained. To our knowledge, this is the highest average power for the 177.3 nm laser. Our results provide a power scaling by three times with respect to previous best works.  相似文献   

2.
We report on the development of a pulsed diode end-pumped Nd:YAG laser mode-locked by a nonlinear mirror and stabilized by an acousto-optical modulator. With the introduction of appropriate intracavity loss, the laser is able to generate 22.8 ps pulses with the energy of 4.5 μJ. After amplification and frequency doubling stages, the second harmonic radiation is used to non-collinearly synchronously pump a β-barium borate optical parametric oscillator in a walk-off compensated scheme. The system demonstrates a wide-tuning range from 635 nm to 2.55 μm for the signal output, with maximum average conversion efficiency as high as 42%.  相似文献   

3.
An actively mode-locked fiber ring laser based on cross-gain modulation (XGM) in a semiconductor optical amplifier (SOA) is demonstrated to operate stably with a simple configuration. By forward injecting an easily-generated external pulse train, the mode-locked fiber laser can generate an optical-pulse sequence with pulsewidth about 6 ps and average output power about 7.9 mW. The output pulses show an ultra-low RMS jitter about 70.7 fs measured by a RF spectrum analyzer. The use of the proposed forward-injection configuration can realize the repetition-rate tunability from 1 to 15 GHz for the generated optical-pulse sequences. By employing a wavelength-tunable optical band-pass filter in the laser cavity, the operation wavelength of the designed SOA-based actively mode-locked fiber laser can be tuned continuously in a wide span between 1528 and 1565 nm. The parameters of external-injection optical pulses are studied experimentally to optimize the mode-locked fiber laser.  相似文献   

4.
The generation of laser pulses with energies of >40 mJ at 25 Hz and durations variable from 15 ps to 45 ps using an Nd:yttrium aluminum garnet laser mode-locked with a Stankov nonlinear mirror is demonstrated. This laser is used to pump an optical parametric generator-amplifier, which is tunable in the visible spectral range.  相似文献   

5.
We report on an injection-seeded 9.5-W 82-MHz-repetition-rate picosecond optical parametric generator (OPG) based on a 55 mm long crystal of periodically poled lithium niobate (PPLN) with a quasi-phase-matching (QPM) grating period of 29.75 μm. The OPG is excited by a continuously diode pumped mode-locked picosecond Nd:YVO4 oscillator-amplifier system. The laser system generates 7 ps pulses with a repetition rate of 82.3 MHz and an average power of 24 W. Without injection-seeding the total average output power of the OPG is 8.9 W, which corresponds to an internal conversion efficiency of 50%. The wavelengths of the signal and idler waves were tuned in the range 1.57–1.64 μm and 3.03–3.3 μm, respectively, by changing the crystal temperature from 150 °C to 250 °C. Injection seeding of the OPG at 1.58 μm with 4 mW of single frequency continuous-wave radiation of a distributed-feedback (DFB) diode laser increases the OPG output to 9.5 W (53% conversion efficiency). The injection seeding increases the pulse duration and reduces the spectral bandwidth. When pumped by 10 W of 1.06 μm laser radiation, the duration of the signal pulses increased from 3.6 ps to 5.5 ps while the spectral bandwidth is reduced from 4.5 nm to 0.85 nm. Seeding thus improved the time-bandwidth product from 1.98 to a value of 0.56, much closer to the Fourier limit. Received: 29 April 2002 / Published online: 8 August 2002  相似文献   

6.
We report an L-shaped symmetrical co-folding-arm plane-plane diode pumped solid-state yellow laser at 589 nm by using intracavity sum-frequency mixing. By carefully designing the cavity and employing various techniques to optimize the laser’s specifications, a quasi-continuous-wave (QCW) free-oscillation yellow laser source, which has an average output power of 8.1 W, a beam quality factor of M2 = 2.3, and a repetition rate of 1.1 kHz, is developed. The generation of yellow laser at 589 nm is achieved by intracavity sum-frequency mixing between the laser lines at 1319 nm and 1064 nm of an Nd:YAG laser in a KTP crystal. To the best of our knowledge, the 8.1 W output at 589 nm is higher than any other diode pumped solid-state yellow laser generated by intracavity sum-frequency generation so far.  相似文献   

7.
The white light continuum (WLC) generated in water/D2O mixture by pumping with the fundamental of ps Nd+3:YAG laser has been used as a variable frequency source for the sum frequency generation as well as for its amplification. 35 ps long pulses with 8 mJ energy at 1064 nm were mixed collinearly with the WLC generated by the same laser beam in a 20 mm thick BBO crystal. The obtained tunable output has been identified as the sum frequency between the fundamental and a portion of the WLC with the required phase matching. Theoretical simulations are also given along with a few initial experiments to use this combination for the difference frequency generation (optical parametric amplification) under non-collinear geometry.  相似文献   

8.
We present the studies of nonlinear refraction and nonlinear absorption in promising crystals which are extensively used in Raman lasers or as solid-state laser host materials: Ba(NO3)2, KGW, KYW, and KYbW. The single-beam z-scan technique with 1 ps laser pulses at 790 and 395 nm has been applied for the study. Nonlinear refraction-index intensity-coefficients and two-photon absorption coefficients have been determined for the crystals. The considerable enhancement of nonlinear refraction is observed in the crystals at 395 nm.  相似文献   

9.
We experimentally analyze the self-starting operation of a figure-eight mode-locked fiber laser. The design is based on a power-balanced nonlinear optical loop mirror (NOLM) with highly twisted low-birefringence fiber and a quarter-wave (QW) retarder in the loop. The NOLM operates by nonlinear polarization rotation. Self-starting mode-locking requires a careful adjustment of the NOLM low-power transmission, which is easily realized with our setup by adjusting the angle of the QW retarder. The laser is capable of generating ∼20 ps pulses at the fundamental repetition frequency of 0.78 MHz.  相似文献   

10.
Simultaneous self-Q-switched and mode-locked have been demonstrated in a diode-pumped Nd,Cr:YAG laser. For the first time as we know, almost 100% modulation depth has been achieved at an intracavity intensity of 5.6 × 105 W/cm2. The maximum average output power of 6.52 W corresponding to a slope efficiency of 30% is obtained at 1064 nm. The laser produces high-quality pulses in a TEM00-mode at the pump power of 16.5 W. The pulse duration of the mode-locked pulses is about 600 ps with 136 MHz repetition rate.  相似文献   

11.
We report the generation of high-peak power multi-wavelength picosecond laser pulses using optical parametric amplification (OPA) in BBO seeded with pulses generated in a 5-mm length BaWO4 crystal by stimulated Raman scattering of 18-ps laser pulses at 532 nm. The maximum output energy of the amplified first-Stokes component at 559.7 nm was about 1.76 mJ. The corresponding maximum peak power, pulse duration and spectral line width were measured to be 117.3 MW, 15 ps and 18.0 cm−1, respectively. The multi-wavelength picosecond laser pulses were in the visible and near infrared ranges. Using this Raman-seeded OPA technique, the beam quality of the stimulated Raman scattering pulses can be improved.  相似文献   

12.
We have demonstrated efficient frequency doubling of high-energy fundamental Nd:YAG laser pulse energy of the multi-joule (J) level at a high repetition rate using high optical-quality top-seeded solution growth CsB3O5(TSSG-CBO) crystal for the first time. Second-harmonic (532 nm) generation (SHG) output energy of 1.2 J at 10 Hz is obtained with a conversion efficiency of 60%. This result has been obtained at the multi-J level by the growth of high optical-quality TSSG-CBO crystal with the large effective nonlinear coefficient and high damage threshold. These results indicate that TSSG-CBO is a good candidate material for high-energy SHG of Nd-doped lasers at the several J level or more with high repetition rate.  相似文献   

13.
We reported an actively Q-switched, intracavity Nd3+:YVO4 self-Raman laser at 1176 nm with low threshold and high efficiency. From the extracavity frequency doubling by use of LBO nonlinear crystal, over 3.5 mW, 588 nm yellow laser is achieved. The maximum Raman laser output at is 182 mW with 1.8 W incident pump power. The threshold is only 370 mW at a pulse repetition frequency of 5 kHz. The optical conversion efficiency from incident to the Raman laser is 10%, and 1.9% from Raman laser to the yellow.  相似文献   

14.
With a reflective single-walled carbon nanotube as the saturable absorber, a laser diode-pumped passively mode-locked Nd:YVO4 laser at 1064 nm was realized for the first time. The pulse duration of 12 ps was produced with a repetition rate of 83.7 MHz. The peak power and the single pulse energy of the mode-locking laser were 1.28 kW and 15.4 nJ, respectively.  相似文献   

15.
An end pumped Nd:YAP laser at 1341 nm is actively mode locked and passively Q-switched. Pumping was done with a pulsed high power laser diode with maximum power 425 W. V3+:YAG with 61% initial transmission served as saturable absorber, and an acousto-optic modulator is used for active mode locking. The output pulse train with 69 ns duration has a total energy of 3.2 mJ with ±4% shot-to-shot fluctuation. The peak output energy of a single mode locked pulse is 0.25 mJ. The pulse duration of a single mode locked pulse is less than 800 ps. The output laser beam is nearly diffraction limited with 1.6 mm diameter, and beam propagation factor M2 about 1.3.  相似文献   

16.
A simultaneous self-Q-switched and mode-locked diode-pumped 946 nm laser by using a Cr,Nd:YAG crystal as gain medium as well as saturable absorber is demonstrated for the first time as we know. The maximum average output power of 751 mW with a slope efficiency of 18.38% is obtained at an intra-cavity average peak power intensity of 4.83 × 106 W/cm2. Under this circumstance, the repetition rate of Q-switched envelopes is 9.63 kHz and the pulse width is about 460 ns. Almost 100% mode-locked modulation depth is obtained at all time in the experiment process whether the incident pump power is low or high. The repetition rate of mode-locked pulses within a Q-switched envelope is 135.13 MHz and the mode-locked pulse width is within 600 ps. The laser produces high-quality pulses in TEM00-mode in the simultaneous self-Q-switched and mode-locked experiment.  相似文献   

17.
A high-power continuous-wave (CW) diode-end-pumped intracavity-frequency-doubled red laser is reported here. The laser consists of a 0.3 at.% Nd:GdVO4 crystal as laser gain medium, a type II non-critical phase-matched (NCPM) LBO crystal or a type I critical phase-matched (CPM) LBO crystal as frequency-doubler, and a three-mirror-folded cavity. At incident pump power of about 41 W, maximum output powers of 3.8 W and 3 W at 671 nm are obtained with corresponding optical-to-optical conversion efficiency of 9.3% and 7.5%, respectively. During half an hour, the instability of the red beam is less than 3% at output of 3 W.  相似文献   

18.
Pulsed UV lasers at the wavelengths of 374 and 280 nm are realized by cascaded second harmonic generation (SHG) and sum frequency generation (SFG) processes using a Nd:YAG laser at 1123 nm. The Nd:YAG laser is longitudinally pumped and passively Q-switched, and it has a high peak power of 3.2 kW. The UV peak powers at 280 and 374 nm are 100 and 310 W, with pulse lengths of 6 and 8 ns, respectively. Spectral broadening of 374 nm laser by stimulated Raman scattering is studied in single mode pure silica core UV fiber. Realizations of UV lasers enabling compact design at 280 and 374 nm wavelengths are demonstrated.  相似文献   

19.
Thermal effect control is critical to scale the output power of diode end-pumping solid lasers to several watts up and beyond. Diffusion bonding crystal has been demonstrated to be an effective method to relieve the thermal lens for the end-pumping laser crystal. The temperature distribution and thermal lens in Nd:YVO4/YVO4 composite crystal was numerically analyzed and compared with that of Nd:YVO4 crystal in this paper. The end-pumping Nd:YVO4/YVO4 composite crystal laser was set up and tested with z cavity. The maximum output power of 9.87 W at 1064 nm and 6.14 W at 532 nm were obtained at the pumping power of 16.5 W. The highest optical-optical conversion efficiencies were up to 60% at 1064 nm and 40% at 532 nm, respectively.  相似文献   

20.
An organo-metallic complex, [(CH3)4N][Ni(dmit)2] (dmit2− = (1,3-dithiole-2-thione-4,5-dithiolate), abbreviated as MeNi, is synthesized. The nonlinear optical absorption properties of MeNi dissolved in acetone have been studied using the open-aperture Z-scan technique with 40 ps pulse width at 1064 nm and 1 ns, 15 ns pulse width at 1053 nm, respectively. Strong saturable absorption has been found when the sample solution is irradiated by 40 ps and 1 ns laser pulses. While irradiated with 15 ns laser pulse, a stronger reverse saturable absorption has been found. The nonlinear optical absorption coefficients are −1.03 × 10−11 m/W, −1.85 × 10−11 m/W and 3.84 × 10−10 m/W, respectively. The mechanism responsible for the difference between the results is analyzed. All the results suggest that this material may be a promising candidate for the application to laser pulse compression in the near-infrared waveband.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号