首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The Lagrangian field-antifield formalism of Batalin and Vilkovisky (BV) is used to investigate the application of the collective coordinate method to soliton quantisation. In field theories with soliton solutions, the Gaussian fluctuation operator has zero modes due to the breakdown of global symmetries of the Lagrangian in the soliton solutions. It is shown how Noether identities and local symmetries of the Lagrangian arise when collective coordinates are introduced in order to avoid divergences related to these zero modes. This transformation to collective and fluctuation degrees of freedom is interpreted as a canonical transformation in the symplectic field-antifield space which induces a time-local gauge symmetry. Separating the corresponding Lagrangian path integral of the BV scheme in lowest order into harmonic quantum fluctuations and a free motion of the collective coordinate with the classical mass of the soliton, we show how the BV approach clarifies the relation between zero modes, collective coordinates, gauge invariance and the center-of-mass motion of classical solutions in quantum fields. Finally, we apply the procedure to the reduced nonlinear O(3) σ-model.  相似文献   

2.
3.
The magnon energy spectra, the sublayer magnetization and the quantum fluctuations in a ferrimagnetic superlattice consisting of four different magnetic sublayers are studied by employing the linear spin-wave approach and Green's function technique. The effects of the interlayer exchange couplings and the spin quantum numbers on the sublayer magnetization and the quantum fluctuations of the systems are discussed for three different spin configurations. The roles of quantum competitions among the interlayer exchange couplings and the symmetry of the different spin configurations have been understood. The magnetizations of some sublayers increase monotonously, while those of others can exhibit their maximum, and the quantum fluctuations of the whole superlattice system can show a minimum when one of the antiferromagnetic interlayer exchange couplings increases. This is due to the quantum competition/transmission of effects of the interlayer exchange couplings. When the spin quantum number of sublayers varies, the system goes through from a quantum region of small spin numbers to a classical region of large spin numbers. The quantum fluctuations of the system exhibit a maximum as a function of the spin quantum number of a sublayer, which is related with higher symmetry of the system. It belongs to the type III Shubnikov group of magnetic groups. This magnetically structural symmetry consists of not only the symmetry of space group, but also the symmetry of the direction and strength of spins.  相似文献   

4.
We show that the two branches of collective modes discovered recently in underdoped cuprates with a large spectral weight are a necessary consequence of the loop-current state. Such a state has been shown in earlier experiments to be consistent with the symmetry of the order parameter competing with superconductivity in four families of cuprates. We also predict a third branch of excitations which cannot be discovered by neutron scattering but may be discovered by other techniques. Using parameters to fit the observed modes, we show that quantum fluctuations change the direction of the effective moments in the ground state to lie at an angle to the c axis as observed in experiments.  相似文献   

5.
With this work we elaborate on the physics of quantum noise in thermal equilibrium and in stationary nonequilibrium. Starting out from the celebrated quantum fluctuation-dissipation theorem we discuss some important consequences that must hold for open, dissipative quantum systems in thermal equilibrium. The issue of quantum dissipation is exemplified with the fundamental problem of a damped harmonic quantum oscillator. The role of quantum fluctuations is discussed in the context of both, the nonlinear generalized quantum Langevin equation and the path integral approach. We discuss the consequences of the time-reversal symmetry for an open dissipative quantum dynamics and, furthermore, point to a series of subtleties and possible pitfalls. The path integral methodology is applied to the decay of metastable states assisted by quantum Brownian noise.  相似文献   

6.
Interquark confinement potential is calculated in the dual monopole Nambu–Jona–Lasinio model with dual Dirac strings suggested in [2,3] as a functional of the dual Dirac string length. The calculation is carried out by explicit integration over quantum fluctuations of a dual-vector field (monopole–antimonopole collective excitation) around the Abrikosov flux line and string shape fluctuations. The contribution of the scalar field (monopole–antimonopole collective excitation) exchange is taken into account in the tree approximation because of the London limit regime. The dominant role of quantum fluctuations for the formation of the linearly rising part of the confinement potential is argued. Received: 10 November 1998 / Revised version: 10 May 1999 / Published online: 12 August 1999  相似文献   

7.
The lowest-energy state of a macroscopic system in which symmetry is spontaneously broken, is a very stable wavepacket centered around a spontaneously chosen, classical direction in symmetry space. However, for a Heisenberg ferromagnet the quantum groundstate is exactly the classical groundstate, there are no quantum fluctuations. This coincides with seven exceptional properties of the ferromagnet, including spontaneous time-reversal symmetry breaking, a reduced number of Nambu–Goldstone modes and the absence of a thin spectrum (Anderson tower of states). Recent discoveries of other non-relativistic systems with fewer Nambu–Goldstone modes suggest these specialties apply there as well. I establish precise criteria for the absence of quantum fluctuations and all the other features. In particular, it is not sufficient that the order parameter operator commutes with the Hamiltonian. It leads to a measurably larger coherence time of superpositions in small but macroscopic systems.  相似文献   

8.
We consider a triple quantum dot system in a triangular geometry with one of the dots connected to metallic leads. Using Wilson’s numerical renormalization group method, we investigate quantum entanglement and its relation to the thermodynamic and transport properties in the regime where each of the dots is singly occupied on average, but with non-negligible charge fluctuations. It is shown that even in the regime of significant charge fluctuations the formation of the Kondo singlets induces switching between separable and perfectly entangled states. The quantum phase transition between unentangled and entangled states is analyzed quantitatively and the corresponding phase diagram is explained by exactly solvable spin model. In the framework of an effective model we also explain smearing of the entanglement transition for cases when the symmetry of the triple quantum dot system is relaxed.  相似文献   

9.
We report an analysis of the magneto-conductance oscillations in two-dimensional mesoscopic ring structures with different geometric symmetry. In particular, we demonstrate that the h/2e magneto-conductance oscillations may be absent or present in purely ballistic quantum rings depending on their geometric symmetry. A detailed analysis of the results is carried out by expanding the transmission amplitudes with backscattering terms. The role of interchannel scattering, which is an essential element of multichannel ballistic transport, is stressed.  相似文献   

10.
The average phase-space density described by the Boltzmann-Langevin model can largely deviate from the one provided by the Boltzmann-Uhling-Uhlenbeck model, due to the non-linear evolution of density fluctuations. This aspect is investigated for long-wavelength, small density fluctuations in the framework of a memory incorporated Boltzmann-Langevin model. It is shown that the correlations associated with density fluctuations yield a collision term describing coupling between the collective vibrations and the single-particle degrees of freedom, which may play an important role in damping of collective motion in both the stable and unstable regions.  相似文献   

11.
We present a simple mathematical model in which a time averaged pattern emerges out of spatio-temporal chaos as a result of the collective action of chaotic fluctuations. Our evolution equation possesses spatial translational symmetry under periodic boundary conditions. Thus the spatial inhomogeneity of the statistical state arises through spontaneous symmetry breaking. The transition from a state of homogeneous spatio-temporal chaos to one exhibiting spatial order is explained by introducing a collective viscosity which relates the averaged pattern with a correlation of the fluctuations. (c) 1996 American Institute of Physics.  相似文献   

12.
The fundamental collective degree of freedom of fractional quantum Hall states is identified as a unimodular two-dimensional spatial metric that characterizes the local shape of the correlations of the incompressible fluid. Its quantum fluctuations are controlled by a topologically quantized "guiding-center spin." Charge fluctuations are proportional to its Gaussian curvature.  相似文献   

13.
It is argued that close to a Coulomb interacting quantum critical point the interaction between two vortices in a disordered superconducting thin film separated by a distance r changes from logarithmic in the mean-field region to 1/r in the region dominated by quantum critical fluctuations. This gives support to the charge-vortex duality picture of the observed reflection symmetry in the current-voltage characteristics on both sides of the transition.  相似文献   

14.
We examine quantum entanglement as a physical phenomenon independent of specific problems of quantum information technologies. Within the dynamic symmetry approach, we briefly discuss the role of quantum fluctuations in formation of entangled states, including single-particle entanglement, relativity of entanglement with respect to the choice of basic observables, and stabilization of robust entanglement.  相似文献   

15.
The ground-state phase transition and the phonon dispersion relation of the quantum double-well model are studied by means of the time-dependent variational approach combined with a Hartree-type many-body trial wavefunction. The single-particle state is taken to be a frozen Jackiw-Kerman wavefunction. Under the condition of minimum uncertainty relation, we obtain an effective classical Hamiltonian for the system and equations of motion for the particle's expectation values. It is shown that the effective substrate potential transits from a symmetric double-well potential to a symmetric single-well potential, and the ground state exhibits a transition from a broken symmetry phase to a restored symmetry phase as increasing the strength of quantum fluctuations. We also obtain the phonon dispersion relations and the phonon gaps at the two phases.  相似文献   

16.
J. Li  R. Yu 《Physics letters. A》2008,372(35):5660-5665
We study the propagation of two quantized optical fields via considering the collective effects of photonic emissions and excitations of a three-level cyclic-type system (such as atomic ensemble with symmetry broken, or the chiral molecular gases, or manual “atomic” array with symmetry broken), where the quantum transitions is driven by two quantized fields and a classical one. The results show that the parametric conversion and maximally entangled photon pair generation can be achieved by means of the collective excitation of the two upper energy levels induced by the classic optical field. This investigation may be used for the generated coherent short-wavelength quantum radiation and quantum information processing.  相似文献   

17.
We study the quantum fluctuations and the amplitude squeezing of a weakly interacting Bose system with spontaneous U(1) symmetry breaking. It is found that this system can exhibit amplitude squeezing.  相似文献   

18.
We describe the first measurements of line-density fluctuations and spatial correlations of quantum turbulence in superfluid 3He-B. All of the measurements are performed in the low-temperature regime, where the normal-fluid density is negligible. The quantum turbulence is generated by a vibrating grid. The vortex-line density is found to have large length-scale correlations, indicating large-scale collective motion of vortices. Furthermore, we find that the power spectrum of fluctuations versus frequency obeys a -5/3 power law which verifies recent speculations that this behavior is a generic feature of fully developed quantum turbulence, reminiscent of the Kolmogorov spectrum for velocity fluctuations in classical turbulence.  相似文献   

19.
It is shown that A. Bohr’s concept of transition fission states can be matched with the properties of Coriolis interaction if an axisymmetric fissile nucleus near the scission point remains cold despite a nonadiabatic character of nuclear collective deformation motion. The quantum and thermodynamic properties of various stages of binary and ternary fission after the descent of a fissile nucleus fromt he outer saddle point are studied within quantum-mechanical fission theory. It is shown that two-particle nucleon-nucleon correlations—in particular, superfluid correlations— play an important role in the formation of fission products and in the classification of fission transitions. The distributions of thermalized primary fission fragments with respect to spins and their projections onto the symmetry axis of the fissile nucleus and fission fragments are constructed, these distributions determining the properties of prompt neutrons and gamma rays emitted by these fragments. A new nonevaporation mechanism of third-particle production in ternary fission is proposed. This mechanism involves transitions of third particles from the cluster states of the fissile-nucleus neck to high-energy states under effects of the shake-off type that are due to the nonadiabatic character of nuclear collective deformation motion.  相似文献   

20.
In disordered itinerant magnets with arbitrary symmetry of the order parameter, the conventional quantum critical point between the ordered phase and the paramagnetic Fermi liquid (PMFL) is destroyed due to the formation of an intervening cluster glass (CG) phase. In this Letter, we discuss the quantum critical behavior at the CG-PMFL transition for systems with continuous symmetry. We show that fluctuations due to quantum Griffiths anomalies induce a first-order transition from the PMFL at T = 0, while at higher temperatures a conventional continuous transition is restored. This behavior is a generic consequence of enhanced non-Ohmic dissipation caused by a broad distribution of energy scales within any quantum Griffiths phase in itinerant systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号