首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
超冷等离子体是一种极低温的强耦合等离子体.无序诱导加热过程是制约其达到高耦合强度的主要因素.我们使用德拜势场单体系等离子体模型的分子动力学方法模拟超冷等离子体的演化过程,研究初始空间分布对无序诱导加热过程的影响.在周期性边界条件下,我们研究了不同初始空间下超冷等离子体的演化过程,证明了有序初始空间分布能够有效提高等离子体的最终耦合强度,其结果与近期的理论计算相符合.进一步我们在演化模拟中考虑了有限体积下超冷等离子的膨胀过程,发现其在有序初始分布下会引发无序过程显著加热超冷等离子体,导致了耦合强度的逐渐降低.  相似文献   

2.
布拉格声光双稳系统时空混沌的单向耦合同步   总被引:1,自引:0,他引:1       下载免费PDF全文
岳立娟  沈柯 《物理学报》2005,54(12):5671-5676
使用非线性动力学中的一维和二维耦合格子模型研究两个声光双稳系统的时空混沌同步.将驱动系统的输出以适当的比例耦合到响应系统并进行均衡, 能实现两系统的时空混沌同步.利用计算最大条件Lyapunov指数, 给出达到同步所需的最小耦合强度与系统参数的关系. 数值实验表明,在小噪声影响时仍然可以实现两系统的同步, 此法具有一定的抗干扰能力. 关键词: 单向耦合同步 时空混沌 布拉格声光双稳系统  相似文献   

3.
We investigate correlations of the intensity fluctuations of two-dimensional arrays of nonidentical, locally coupled lasers, numerically and experimentally. We find evidence of a power-law dependence of spatial correlations as a function of laser pair distance (or coupling strength) near the phase-locking threshold.  相似文献   

4.
《Physics letters. A》1998,244(6):538-544
We analyse dimension and entropy estimates from local measurements in a weakly coupled extensively chaotic system. We observe a staircase-like signature related to the coupling strength. This behaviour can be explained by studying the transformation between the spatial states and the states reconstructed by delay embedding, using the concept of the continuous entropy.  相似文献   

5.
We report measurements of a tunable double quantum dot, operating in the quantum regime, with integrated local charge sensors. The spatial resolution of the sensors allows the charge distribution within the double dot system to be resolved at fixed total charge. We use this readout scheme to investigate charge delocalization as a function of temperature and strength of tunnel coupling, demonstrating that local charge sensing can be used to accurately determine the interdot coupling in the absence of transport.  相似文献   

6.
We study the influence of quenched disorder on quantum phase transitions in systems with overdamped dynamics. For Ising order-parameter symmetry disorder destroys the sharp phase transition by rounding because a static order parameter can develop on rare spatial regions. This leads to an exponential dependence of the order parameter on the coupling constant. At finite temperatures the static order on the rare regions is destroyed. This restores the phase transition and leads to a double-exponential relation between critical temperature and coupling strength. We discuss the behavior based on Lifshitz-tail arguments and illustrate the results by simulations of a model system.  相似文献   

7.
We propose a simple method to determine the local coupling strength Gamma experimentally, by linking the individual particle dynamics with the local density and crystal structure of a 2D plasma crystal. By measuring particle trajectories with high spatial and temporal resolution we obtain the first maps of Gamma and temperature at individual particle resolution. We employ numerical simulations to test this new method, and discuss the implications to characterize strongly coupled systems.  相似文献   

8.
We study the effects of nonlocal control of pulse propagation in excitable media. As ageneric example for an excitable medium the FitzHugh-Nagumo model with diffusion in theactivator variable is considered. Nonlocal coupling in form of an integral term with aspatial kernel is added. We find that the nonlocal coupling modifies the propagatingpulses of the reaction-diffusion system such that a variety of spatio-temporal patternsare generated including acceleration, deceleration, suppression, or generation of pulses,multiple pulses, and blinking pulse trains. It is shown that one can observe these effectsfor various choices of the integral kernel and the coupling scheme, provided that thecontrol strength and spatial extension of the integral kernel is appropriate. In addition,an analytical procedure is developed to describe the stability borders of the spatiallyhomogeneous steady state in control parameter space in dependence on the parameters of thenonlocal coupling.  相似文献   

9.
We report coherent operation of a singlet-triplet qubit controlled by the spatial arrangement of two confined electrons in an adjacent double quantum dot that is electrostatically coupled to the qubit. This four-dot system is the specific device geometry needed for two-qubit operations of a two-electron spin qubit. We extract the strength of the capacitive coupling between qubit and adjacent double quantum dot and show that the present geometry allows fast conditional gate operation, opening pathways toward implementation of a universal set of gates for singlet-triplet spin qubits.  相似文献   

10.
采用类Kuramoto模型对电网中的节点进行建模,利用局部序参数描述节点的局部同步能力.研究发现相比小功率节点,大功率节点到其直接邻居节点更难达到同步.提出一种网络耦合强度的非均匀分配方法,在网络总耦合强度不变的情况下,增大大功率节点到其直接邻居节点的耦合强度以及相关节点对之间的连边耦合强度,减少其余节点对间的耦合强度.研究表明,这种方法可以在一定范围内降低电网的同步临界耦合强度,改善网络的同步性能;但当这种耦合强度的非均匀性过大时,网络的同步性能开始恶化.  相似文献   

11.
Using the power flow equation, we have calculated spatial transients of power distribution and a steady-state distribution that are due to coupling of guided to leaky modes in W-type optical fibers (doubly clad fibers). A numerical solution has been obtained by the explicit finite difference method. Results show that power distribution in W-type optical fibers depends on both the intermediate layer width and the coupling strength. W-shaped index profile of optical fibers is effective in reducing modal dispersion and therefore in improving the fiber bandwidth. We have also shown that explicit finite difference method is effective and accurate for solving the power flow equation in W-type optical fibers.  相似文献   

12.
We investigate the consequences for geometrically frustrated antiferromagnets of weak disorder in the strength of exchange interactions. Taking as a model the classical Heisenberg antiferromagnet with nearest neighbor exchange on the pyrochlore lattice, we examine low-temperature behavior. We show that spatial modulation of exchange generates long-range effective interactions within the extensively degenerate ground states of the clean system. Using Monte Carlo simulations, we find a spin glass transition at a temperature set by the disorder strength. Disorder of this type, which is generated by random strains in the presence of magnetoelastic coupling, may account for the spin freezing observed in many geometrically frustrated magnets.  相似文献   

13.
A variety of complex fluids under shear exhibit complex spatiotemporal behavior, including what is now termed rheological chaos, at moderate values of the shear rate. Such chaos associated with rheological response occurs in regimes where the Reynolds number is very small. It must thus arise as a consequence of the coupling of the flow to internal structural variables describing the local state of the fluid. We propose a coupled map lattice model for such complex spatiotemporal behavior in a passively sheared nematic liquid crystal using local maps constructed so as to accurately describe the spatially homogeneous case. Such local maps are coupled diffusively to nearest and next-nearest neighbors to mimic the effects of spatial gradients in the underlying equations of motion. We investigate the dynamical steady states obtained as parameters in the map and the strength of the spatial coupling are varied, studying local temporal properties at a single site as well as spatiotemporal features of the extended system. Our methods reproduce the full range of spatiotemporal behavior seen in earlier one-dimensional studies based on partial differential equations. We report results for both the one- and two-dimensional cases, showing that spatial coupling favors uniform or periodically time-varying states, as intuitively expected. We demonstrate and characterize regimes of spatiotemporal intermittency out of which chaos develops. Our work indicates that similar simplified lattice models of the dynamics of complex fluids under shear should provide useful ways to access and quantify spatiotemporal complexity in such problems, in addition to representing a fast and numerically tractable alternative to continuum representations.  相似文献   

14.
The effects of nonlocal and fractal connectivity are investigated in a network of Leaky Integrate-and-Fire (LIF) elements. The idea of fractal coupling originates from the hierarchical topology of networks formed by neuronal axons, which transmit the electrical signals in the brain. If a number of LIF elements with finite refractory period are nonlocally coupled, multi-chimera states emerge whose multiplicity depends both on the coupling strength and on the refractory period. We provide evidence that the introduction of a hierarchical topology in the coupling induces novel complex spatial and temporal structures, such as nested chimera states and transitions between multi-chimera states with different multiplicities. These results demonstrate new complex patterns, as well as transitions between different multi-chimera states arising from the combination of nonlinear dynamics with the hierarchical coupling.  相似文献   

15.
Within the framework of phase fluctuation picture for the pseudogap state of cuprate superconductors, we study the effects of both spatial inhomogeneity of coupling strength and thermal phase fluctuations on the superconducting transition temperature. Such a Berezinsky-Kosterlitz-Thouless (BKT) transition is characterized by a two-dimensional (2D) classical XY model, in which the bond coupling is assumed to be roughly proportional to the superconducting bond order parameter. In recent STM experiments with lattice-tracking spectroscopy technique, a Gaussian-like spatially distributed pairing strength is observed. Our Monte Carlo simulations using Wolff cluster update on such 2D classical XY model, in which the bond coupling obeys a similar spatial Gaussian distribution, indicate that the enhancement of the variance of Gaussian distribution may suppress the BKT transition temperature. In addition, we calculate the related physical quantities, including the spin stiffness, free energy, specific heat, magnetization and magnetic susceptibility, by changing the inhomogeneity variance.  相似文献   

16.
Z.-H. Liu  P.M. Hui 《Physica A》2007,383(2):714-724
We propose and study the collective behavior of a model of networked signaling objects that incorporates several ingredients of real-life systems. These ingredients include spatial inhomogeneity with grouping of signaling objects, signal attenuation with distance, and delayed and impulsive coupling between non-identical signaling objects. Depending on the coupling strength and/or time-delay effect, the model exhibits completely, partially, and locally collective signaling behavior. In particular, a correlated signaling (CS) behavior is observed in which there exist time durations when nearly a constant fraction of oscillators in the system are in the signaling state. These time durations are much longer than the duration of a spike when a single oscillator signals, and they are separated by regular intervals in which nearly all oscillators are silent. Such CS behavior is similar to that observed in biological systems such as fireflies, cicadas, crickets, and frogs. The robustness of the CS behavior against noise is also studied. It is found that properly adjusting the coupling strength and noise level could enhance the correlated behavior.  相似文献   

17.
张国勇  马军  俞连春  陈勇 《中国物理 B》2008,17(11):4107-4113
We studied synchronization behaviours of spiral waves in a two-layer coupled inhomogeneous excitable system. It was found that phase synchronization can be observed under weak coupling strength. By increasing the coupling strength, the synchronization is broken down. With the further increase of the coupling strength, complete synchronization and phase synchronization occur again. We also found that the inhomogeneity in excitable systems is helpful to the synchronization.  相似文献   

18.
Recently, delay-induced coherence resonance (CR) in neuronal networks with fixed coupling strength has received much attention. In this paper, we study delay-induced CR in Newman-Watts neuronal networks with time-periodic coupling strength, mainly investigating how CR changes with the varying frequency of time-periodic coupling strength. We find that delay-induced CR become more frequent as the frequency is increased. When the frequency exceeds a threshold value, time delay can induce multiple CR more than for constant coupling strength. Furthermore, delay-induced CR occurs more abruptly and becomes more pronounced for time-periodic coupling strength than for constant coupling strength. These results show that delay-induced CR strongly depends on the coupling strength of neurons, and time delay can optimize spiking coherence more frequently and precisely in the presence of time-periodic coupling strength. This implies that time-periodic coupling strength could be more helpful for time delay to enhance and optimize the spiking coherence, and thus it may play a more efficient role in improving the time precision of information processing in neuronal networks.  相似文献   

19.
电-声子耦合强度对量子点系统噪声的影响   总被引:1,自引:1,他引:0  
利用Lang-Firsov正则变换和Keldysh非平衡格林函数方法研究了低温下具有电子-声子相互作用的量子点系统的噪声.我们特别注意了电-声子耦合强度的变化对量子点系统噪声的影响.数值结果表明:随着电-声子耦合强度的增大,系统的噪声增大,同时微分噪声谱中会出现一系列的声子伴带峰,峰的高度和数目对电-声子耦合强度的变化非常敏感.我们也研究了系统的Fano因子,它显示系统噪声对肖特基(Schottky)公式的偏离.在高偏压区,Fano因子随着电-声子耦合强度的增大而增大.  相似文献   

20.
利用Lang-Firsov正则变换和Keldysh非平衡格林函数方法研究了低温下具有电子-声子相互作用的量子点系统的噪声。我们特别注意了电-声子耦合强度的变化对量子点系统噪声的影响。数值结果表明:随着电-声子耦合强度的增大,系统的噪声增大,同时微分噪声谱中会出现一系列的声子伴带峰,峰的高度和数目对电-声子耦合强度的变化非常敏感。我们也研究了系统的Fano因子,它显示系统噪声对肖特基(Schottky)公式的偏离。在高偏压区,Fano因子随着电-声子耦合强度的增大而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号