首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 680 毫秒
1.
For dynamic scheduling of multi-class systems where backorder cost is incurred per unit backordered regardless of the time needed to satisfy backordered demand, the following models are considered: the cost model to minimize the sum of expected average inventory holding and backorder costs and the service model to minimize expected average inventory holding cost under an aggregate fill rate constraint. Use of aggregate fill rate constraint in the service model instead of an individual fill rate constraint for each class is justified by deriving equivalence relations between the considered cost and service models. Based on the numerical investigation that the optimal policy for the cost model is a base-stock policy with switching curves and fixed base-stock levels, an alternative service model is considered over the class of base-stock controlled dynamic scheduling policies to minimize the total inventory (base-stock) investment under an aggregate fill rate constraint. The policy that solves this alternative model is proposed as an approximation of the optimal policy of the original cost and the equivalent service models. Very accurate heuristics are devised to approximate the proposed policy for given base-stock levels. Comparison with base-stock controlled First Come First Served (FCFS) and Longest Queue (LQ) policies and an extension of LQ policy (Δ policy) shows that the proposed policy performs much better to solve the service models under consideration, especially when the traffic intensity is high.  相似文献   

2.
This paper presents a stochastic inventory model for situations in which, during a stockout period, a fraction β of the demand is backordered and the remaining fraction 1 – β is lost. The model is suggested by the customers' different reactions to a stockout condition: during the stockout period, some patient customers wait until their demand is satisfied, while other impatient or urgent customers cannot wait and have to fill their demand from another source. The cost of a backorder is assumed to be proportional to the length of time for which the backorder exists, and a fixed penalty cost is incurred per unit of lost demand. Based on a heuristic treatment of a lot-size reorder-point policy, a mathematical model representing the average annual cost of operating the inventory system is developed. The optimal operating policy variables minimizing the average annual cost can be calculated iteratively. At the extremes β = 1 and β = 0, the model presented reduces to the usual backorders and lost sales case, respectively.  相似文献   

3.
张勇  张盛浩  南希 《运筹与管理》2022,31(11):149-154
考虑一个周期盘点、无限期、缺货回补、双需求类的库存系统,其中高优先级需求的目标服务水平较高。系统采用基准库存策略补充库存,依据静态配给策略分配库存,即优先满足高优先级需求,仅当持有库存水平不低于固定配给阈值时满足低优先级需求。优化目标是在服务水平约束下最小化期望库存持有量。为提升计算效率,引入“预留库存假设”,即允许通过提高低优先级需求缺货水平的方式补充库存,使得期末持有库存水平不低于本期高优先级需求缺货水平与固定配给阈值之和。基于预留库存假设,给出两类需求服务水平和期望库存持有量的解析表达式,证明上述绩效指标关于控制参数的单调性,刻画满足服务水平约束的控制参数可行域,得到原系统最优控制参数的近似求解算法。算例分析表明,基于预留库存假设的绩效衡量方法和参数求解算法准确性好且计算效率高。  相似文献   

4.
This paper investigates inventory models in which the stockout cost is replaced by a minimal service level constraint (SLC) that requires a certain level of service to be met in every period. The minimal service level approach has the virtue of simplifying the computation of an optimal ordering policy, because the optimal reorder level is solely determined by the minimal SLC and demand distributions. It is found that above a certain “critical” service level, the optimal (s,S) policy “collapses” to a simple base-stock or order-up-to level policy, which is independent on the cost parameters. This shows the minimal SLC models to be qualitatively different from their shortage cost counterparts. We also demonstrate that the “imputed shortage cost” transforming a minimal SLC model to a shortage cost model does not generally exist. The minimal SLC approach is extended to models with negligible set-up costs. The optimality of myopic base-stock policies is established under mild conditions.  相似文献   

5.
In this paper we consider a periodic review dynamic inventory problem with non-stationary demands. The purpose of this paper is to show that near myopic policies are sufficiently close to optimal decisions for the infinite horizon inventory problem. In order to show this we pay attention to the fact that inventory processes with base-stock policies are weakly ergodic, and we discuss how the weak ergodicity is related to near myopic policies. Then we derive the error bounds of near myopic policies for the optimal decisions and evaluate them with a number of numerical experiments.  相似文献   

6.
This paper is concerned with finding the optimal replenishment policy for an inventory model that minimizes the total expected discounted costs over an infinite planning horizon. The demand is assumed to be driven by a Brownian motion with drift and the holding costs (inventory and shortages) are assumed to take some general form. This generalizes the earlier work where holding costs were assumed linear. It turns out that problem of finding the optimal replenishment schedule reduces to the problem of solving a Quasi-Variational Inequality Problem (QVI). This QVI is then shown to lead to an (sS) policy, where s and S are determined uniquely as a solution of some algebraic equations.  相似文献   

7.
《随机分析与应用》2013,31(3):589-625
Abstract

We consider a periodic-review stochastic inventory problem in which demands for a single product in each of a finite number of periods are independent and identically distributed random variables. We analyze the case where shortages (stockouts) are penalized via fixed and proportional costs simultaneously. For this problem, due to the finiteness of the planning horizon and non-linearity of the shortage costs, computing the optimal inventory policy requires a substantial effort as noted in the previous literature. Hence, our paper is aimed at reducing this computational burden. As a resolution, we propose to compute “the best stationary policy.” To this end, we restrict our attention to the class of stationary base-stock policies, and show that the multi-period, stochastic, dynamic problem at hand can be reduced to a deterministic, static equivalent. Using this important result, we introduce a model for computing an optimal stationary base-stock policy for the finite horizon problem under consideration. Fundamental analytic conclusions, some numerical examples, and related research findings are also discussed.  相似文献   

8.
Competitive retail environments are characterized by service levels and lost sales in case of excess demand. We contribute to research on lost-sales models with a service level criterion in multiple ways. First, we study the optimal replenishment policy for this type of inventory system as well as base-stock policies and (RsS) policies. Furthermore, we derive lower and upper bounds on the order-up-to level, and we propose efficient approximation procedures to determine the order-up-to level. The procedures find values of the inventory control variables that are close to the best (RsS) policy and comply to the service level restriction for most of the instances, with an average cost increase of 2.3% and 1.2% for the case without and with fixed order costs, respectively.  相似文献   

9.
The article deals with an EOQ (economic order quantity) model over an infinite time horizon for perishable items where demand is price dependent and partial backorder is permitted. The rate of deterioration is taken to be time proportional and it is assumed that shortage occurs at starting of the inventory cycle. Based on the partial backlogging and lost sale cases, the author develops the criterion for the optimal solution for the replenishment schedule, and proves the optimal ordering policy is unique. Moreover, the article suggests to new functions regarding price-dependent demand and time varying deterioration rate. Finally, numerical examples are illustrated to test the model in various issues.  相似文献   

10.
This paper addresses the single-item, non-stationary stochastic demand inventory control problem under the non-stationary (R, S) policy. In non-stationary (R, S) policies two sets of control parameters—the review intervals, which are not necessarily equal, and the order-up-to-levels for replenishment periods—are fixed at the beginning of the planning horizon to minimize the expected total cost. It is assumed that the total cost is comprised of fixed ordering costs and proportional direct item, inventory holding and shortage costs. With the common assumption that the actual demand per period is a normally distributed random variable about some forecast value, a certainty equivalent mixed integer linear programming model is developed for computing policy parameters. The model is obtained by means of a piecewise linear approximation to the non-linear terms in the cost function. Numerical examples are provided.  相似文献   

11.
Stochastic Multiproduct Inventory Models with Limited Storage   总被引:2,自引:0,他引:2  
This paper studies multiproduct inventory models with stochastic demands and a warehousing constraint. Finite horizon as well as stationary and nonstationary discounted-cost infinite-horizon problems are addressed. Existence of optimal feedback policies is established under fairly general assumptions. Furthermore, the structure of the optimal policies is analyzed when the ordering cost is linear and the inventory/backlog cost is convex. The optimal policies generalize the base-stock policies in the single-product case. Finally, in the stationary infinite-horizon case, a myopic policy is proved to be optimal if the product demands are independent and the cost functions are separable.  相似文献   

12.
This paper is concerned with the optimality of (s, S) policies for a single-item inventory control problem which minimizes the total expected cost over an infinite planning horizon and where the demand is driven by a piecewise deterministic process. Our approach is based on the theory of quasi-variational inequality.  相似文献   

13.
We analyze an infinite horizon, single product, continuous review model in which pricing and inventory decisions are made simultaneously and ordering cost includes a fixed cost. We show that there exists a stationary (s,S) inventory policy maximizing the expected discounted or expected average profit under general conditions.  相似文献   

14.
In this paper, we consider inventory models for periodic-review systems with replenishment cycles, which consist of a number of periods. By replenishment cycles, we mean that an order is always placed at the beginning of a cycle. We use dynamic programming to formulate both the backorder and lost-sales models, and propose to charge the holding and shortage costs based on the ending inventory of periods (rather than only on the ending inventory of cycles). Since periods can be made any time units to suit the needs of an application, this approach in fact computes the holding cost based on the average inventory of a cycle and the shortage cost in proportion to the duration of shortage (for the backorder model), and remedies the shortcomings of the heuristic or approximate treatment of such systems (Hadley and Whitin, Analysis of Inventory Systems, Prentice-Hall, Englewood Cliffs, NJ, 1963). We show that a base-stock policy is optimal for the backorder model, while the optimal order quantity is a function of the on-hand inventory for the lost-sales model. Moreover, for the backorder model, we develop a simple expression for computing the optimal base-stock level; for the lost-sales model, we derive convergence conditions for obtaining the optimal operational parameters.  相似文献   

15.
In many production/inventory systems, not only is the production/inventory capacity finite, but the systems are also subject to random production yields that are influenced by factors such as breakdowns, repairs, maintenance, learning, and the introduction of new technologies. In this paper, we consider a single-item, single-location, periodic-review model with finite capacity and Markov modulated demand and supply processes. When demand and supply processes are driven by two independent, discrete-time, finite-state, time-homogeneous Markov chains, we show that a modified, state-dependent, inflated base-stock policy is optimal for both the finite and infinite horizon planning problems. We also show that the finite-horizon solution converges to the infinite-horizon solution.  相似文献   

16.
In this work, we consider a continuous review base stock policy inventory system with retrial demands. The maximum storage capacity is S. It is assumed that primary demand is of unit size and primary demand time points form a Poisson process. A one-to-one ordering policy is adopted. According to this policy, orders are placed for one unit, as and when the inventory level drops due to a demand. We assume that the demands occur during the stock-out periods enter into the orbit of infinite size. The lead time is assumed to be exponential. The joint probability distribution of the inventory level and the number of demands in the orbit are obtained in the steady state case. Various system performance measures in the steady state are derived. The results are illustrated with suitable numerical examples.  相似文献   

17.
In this paper we consider a nonstationary periodic review dynamic production–inventory model with uncertain production capacity and uncertain demand. The maximum production capacity varies stochastically. It is known that order up-to (or base-stock, critical number) policies are optimal for both finite horizon problems and infinite horizon problems. We obtain upper and lower bounds of the optimal order up-to levels, and show that for an infinite horizon problem the upper and the lower bounds of the optimal order up-to levels for the finite horizon counterparts converge as the planning horizons considered get longer. Furthermore, under mild conditions the differences between the upper and the lower bounds converge exponentially to zero.  相似文献   

18.
We study an inventory system where demand on the stockout period is partially backlogged. The backlogged demand ratio is a mixture of two exponential functions. The shortage cost has two significant costs: the unit backorder cost (which includes a fixed cost and a cost proportional to the length of time for which the backorder exists) and the cost of lost sales. A general procedure to determine the optimal policy and the minimum inventory cost for all the parameter values is developed. This model generalizes several inventory systems analyzed by different authors. Numerical examples are used to illustrate the theoretical results.  相似文献   

19.
This paper studies the inventory management problem of dual channels operated by one vendor. Demands of dual channels are inventory-level-dependent. We propose a multi-period stochastic dynamic programming model which shows that under mild conditions, the myopic inventory policy is optimal for the infinite horizon problem. To investigate the importance of capturing demand dependency on inventory levels, we consider a heuristic where the vendor ignores demand dependency on inventory levels, and compare the optimal inventory levels with those recommended by the heuristic. Through numerical examples, we show that the vendor may order less for dual channels than those recommended by the heuristic, and the difference between the inventory levels in the two cases can be so large that the demand dependency on inventory levels cannot be neglected. In the end, we numerically examine the impact of different ways to treat unmet demand and obtain some managerial insights.  相似文献   

20.
We consider an infinite horizon, single item inventory model with backorders and a fixed lead time. Demand is stationary stochastic and review is periodic. Inventory may only be replenished in multiples of a fixed package size q but demands may be of any size. Ordering costs are linear and combined holding and shortage costs can be expressed as a convex function of the inventory position. The control policy is defined as (s, S, q), where an order is placed if the inventory position falls to or below s and the order size is the largest multiple of q which results in the inventory position not exceeding S. The parameters s and S are restricted to be multiples of q. The objective is to find the control policy that minimizes the long run average cost per unit time. The optimal solution procedure requires renewal theory and a structured search. Fortunately, a heuristic based on the ‘quantized ordering’ approach of Zheng and Chen provides solutions that are near optimal over a broad range of parameter values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号