首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamic response of an oscillating microcantilever with a gold-coated tip interacting with dissimilar functionalized silica surfaces was studied in electrolyte solutions with pH ranging from 4 to 9. Silica surfaces were chemically modified, yielding dissimilar surfaces with -Br, -NH(2), and -CH(3) functional group terminations. The relative hydrophobicity of the surfaces was characterized by contact angle measurements. The surface charge of the functionalized surfaces was first probed with commonly used static AFM measurements and serves as a reference to the dynamic response data. The amplitude and phase of the cantilever oscillation were monitored and used to calculate the effective interaction stiffness and damping coefficient, which relate to the electrical double layer interactions and also to distance-dependent hydrodynamic damping at the solid/water interface. The data for the dynamic response of the AFM over silica surfaces as a function of chemical functionalization and electrolyte pH show that the effective stiffness has a distinctive dependence on the surface charge of functionalized silica surfaces. The hydrodynamic damping also correlates strongly with the relative hydrophobicity of the surface. The data reported here indicate that interfacial properties can be strongly affected by changing the chemical composition of surfaces.  相似文献   

2.
Extracting quantitative information from amplitude-modulation atomic force microscopy (AM-AFM) in viscous ionic liquids is difficult because existing theory requires knowledge of the cantilever natural frequency, which cannot be measured in the absence of a resonance peak. We present a new model that describes cantilever dynamics in an overdamped medium (Q < 0.5) and derive the theory necessary to extract the stiffness and damping in highly viscous liquids. The proposed methodology is used to measure the solvation layers of an ionic liquid at a gold electrode.  相似文献   

3.
This report demonstrates the successful use of the inverted atomic force microscope (i-AFM) for tapping mode AFM imaging of cantilever-supported samples. i-AFM is a mode of AFM operation in which a sample supported on a tipless cantilever is imaged by one of many tips in a microfabricated tip array. Tapping mode is an intermittent contact mode whereby the cantilever is oscillated at or near its resonance frequency, and the amplitude and/or phase are used to image the sample. In the process of demonstrating that tapping mode images could be obtained in the i-AFM design, it was observed that the amplitude of the cantilever oscillation decreased markedly as the cantilever and tip array were approached. The source of this damping of the cantilever oscillations was identified to be the well-known "squeeze film damping", and the extent of damping was a direct consequence of the relatively shorter tip heights for the tip arrays, as compared to those of commercially available tapping mode cantilevers with integrated tips. The functional form for the distance dependence of the damping coefficient is in excellent agreement with previously published models for squeeze film damping, and the values for the fitting parameters make physical sense. Although the severe damping reduces the cantilever free amplitude substantially, we found that we were still able to access the low-amplitude regime of oscillation necessary for attractive tapping mode imaging of fragile molecules.  相似文献   

4.
We have fabricated polymer tips for atomic force microscopy in order to elucidate the effects of tip length and shape on cantilever vibration damping in liquids. The vibration damping is investigated by measuring the vibration amplitude of cantilevers as a function of tip-sample distance. The cantilever with a short tip provides a higher damping effect over long tip-sample distances. When the vibration amplitude was rescaled to show the effect of the cantilever width on oscillation damping, the vibration amplitude of cantilevers with various tip lengths was similarly obtained in a long distance range over 50 μm. This similarity is explained by an acoustic damping model in which an acoustic wave is generated by the cantilever. Finally, the results indicate a cantilever with a sufficiently long tip compared to the cantilever width can dramatically reduce the long-range damping effect in a liquid environment.  相似文献   

5.
A bubble attached to the end of an atomic force microscope cantilever and driven toward or away from a flat mica surface across an aqueous film is used to characterize the dynamic force that arises from hydrodynamic drainage and electrical double layer interactions across the nanometer thick intervening aqueous film. The hydrodynamic response of the air/water interface can range from a classical fully immobile, no-slip surface in the presence of added surfactants to a partially mobile interface in an electrolyte solution without added surfactants. A model that includes the convection and diffusion of trace surface contaminants can account for the observed behavior presented. This model predicts quantitatively different interfacial dynamics to the Navier slip model that can also be used to fit dynamic force data with a post hoc choice of a slip length.  相似文献   

6.
Monolayers of dendrimers were prepared on mica by spin-coating of the second generation carbosilane dendrons with 9 SiCl(3) periphery groups. AFM images of the films showed the presence of soft yet robust, dome-shaped features with a base diameter of 100-2000 nm. The apparent height of the features, ranging from 10 to 200 nm, rapidly reduced under increasing compression force, eventually to the same value ( approximately 2.5 nm) corresponding to a bilayer of the flattened dendrons. The change in shape of the features in response to the compression force from the AFM tip was fully reversible, indicating that the features were robust. The contrast of the features in the tapping mode AFM (TMAFM) phase images flipped at a setpoint ratio of approximately 0.55. In contrast to the reported amplitude vs displacement (A/z) curves for compliant materials, A/z curves of the features showed that the reduction of amplitude was larger than the tip displacement as if the cantilever tip were repelled by the soft features. This result cautions the use of amplitude/phase vs displacement (APD) curves for interpreting TMAFM images and for optimizing conditions for TMAFM imaging of very soft and "sticky" surfaces. On the basis of the AFM studies, we believe that the dome-shaped features are membranous air bubbles. The membranes of the bubbles were probably composed of a bilayer of the dendron molecules bound through the peripheral silanol groups. The bilayer could be formed by self-assembly of the molecules on top of the air bubbles entrapped at the monolayer/solution interface during spin-coating.  相似文献   

7.
Recent experimental developments have enabled the measurement of dynamical forces between two moving liquid drops in solution using an atomic force microscope (AFM). The drop sizes, interfacial tension, and approach velocities used in the experiments are in a regime where surface forces, hydrodynamics, and drop deformation are all significant. A detailed theoretical model of the experimental setup which accounts for surface forces, hydrodynamic interactions, droplet deformation, and AFM cantilever deflection has been developed. In agreement with experimental observations, the calculated force curves show pseudo-constant compliance regions due to drop flattening, as well as attractive pull-off forces due mainly to hydrodynamic lubrication forces.  相似文献   

8.
Atomic force microscopy (AFM) has been used to determine the surface energy of chemically modified surfaces at a local scale. In order to achieve this aim, it was necessary to graft both the AFM tip and the substrate with the same chemical functional groups. Two different organothiols terminated either by hydrophilic or hydrophobic chemical functionalities were used. Grafting process classically reported shows that after UV/ozone treatment for 30 min, the tip is coated by thermal deposition with 4‐5‐nm‐thick titanium layer followed by a 30‐nm‐thick gold layer. Finally, the tip is grafted by organothiols. The thickness of the layer deposited on the tip is of the same order of magnitude as the tip radius. To avoid the use of Ti and to decrease the thickness of the gold layer, we have developed a new way of grafting by using organic molecules like (3‐mercaptopropyl)triethoxysilane (MPS) as a linkage agent. Then this way of grafting was checked. Finally, AFM force‐distance curves, between grafted tips and chemically modified surface, were carried out in contact mode. Calibration of the various parts of the apparatus and especially of the cantilever (spring constant and tip radius) is of major importance to reach quantitative data. Finally, by applying a suitable theory of contact, we were able to determine the surface energy of our system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Nanografting, an atomic force microscopy (AFM) based nanolithography technique, is becoming a popular method for patterning self-assembled monolayers (SAMs). In this technique, a nanoscale patch of a thiol-on-gold SAM is exchanged with a different thiol by the action of an AFM tip operated in contact mode at high load. The results are then imaged in topographic or lateral force microscopy again at low values of the load. One of the problems of contact mode nanografting is that monolayers of large molecules such as proteins are likely to be deformed, damaged, or even removed from the surface by contact mode imaging even when small loads are used. Furthermore, we need to note that the stiffness of the cantilevers used in contact mode is different than that of the cantilevers used in tapping mode and that tip changing in the course of an experiment can be quite inconvenient. Here, we show that a monolayer on a gold substrate can be nanografted using tapping mode AFM (also referred to as amplitude modulation AFM) rather than the commonly used contact mode. While the grafting parameters are somewhat trickier to choose, the results demonstrate that nanografting in tapping mode can make patches of the same quality as those made by contact mode, therefore allowing for gentle imaging of the grafted molecules and the whole SAM without changing the microscope tip.  相似文献   

10.
The constrained molecular-dynamics technique was employed to investigate the transport of a nitrate ion across the water liquid/vapor interface. We developed a nitrate-ion-water polarizable potential that accurately reproduces the solvation properties of the hydrated nitrate ion. The computed free-energy profile for the transfer of the nitrate ion across the air/water interface increases monotonically as the nitrate ion approaches the Gibbs dividing surface from the bulk liquid side. The computed density profiles of 1M KNO(3) salt solution indicate that the nitrate and potassium ions are both found below the aqueous interface. Upon analyzing the results, we conclude that the probability of finding the nitrate anion at the aqueous interface is quite small.  相似文献   

11.
The atomic force microscope (AFM) was used to acquire force versus distance curves between the cantilever tip and samples bearing a surface overlayer of covalently linked alginic acid. The alginic acid coating resists cell-adhesion in in vitro experiments involving a normal and a tumor cell line. However, the surface becomes cell adhesive when alginic acid coated samples are subjected to glow discharge treatment. Force curves show in both cases the typical features resulting from the interaction between the cantilever tip and a hydrophilic, compressible polymer overlayer, suggesting that in both cases a diffuse interface with water exists. Following some recent findings on oligoethyleneglycol-terminated self-assembled-monolayers, it is suggested that conformational and molecular aspects of hydrophilic surface layers, rather than steric repulsion effects, could play a significant role in the mechanism that controls resistance to bio-adhesion.  相似文献   

12.
A method has been developed for attaching oil (tetradecane) droplets to the end of an atomic force microscopy (AFM) cantilever and for immobilizing droplets on a glass substrate. This approach has permitted the monitoring of droplet-droplet interactions in aqueous solution as a function of interdroplet separation. Coating the droplet surfaces with added proteins or surfactants has allowed the production of model emulsions. We demonstrate that AFM measurements of droplet deformability are sensitive to interfacial rheology by modifying the interfacial film on a pair of droplets in situ. For droplets coated with the anionic surfactant sodium dodecyl sulfate, screening of the double layer has been found to facilitate coalescence. Direct imaging of the droplets has revealed the presence of regularly spaced concentric rings on the droplet surfaces. Careful experimental studies suggest that these structures may be imaging artifacts and are not perturbations of the droplet surface determined by the composition of the interface.  相似文献   

13.
AFM诱导正十八硫醇在金基底上的选择性生长   总被引:1,自引:0,他引:1  
扫描探针显微镜(SCCnningPF0boMICCOSCOPy,SPM)由于其极高的空间分辨能力和高度的可控性,已成为纳米尺度加工的有力工具[‘·’j.自Schneir等[’j报道原子级平整金基底的制备和用装备An针尖的扫描隧道显微镜(ScanningTunnelingMicroscoPy,STM)在基底上制备金纳米点以来,有关在All和HOPG等基底上制备由金点构成的任意图案的方法及用导电原子力显微镜(AtomicForceM卜roscopy,AFM)在HOPG和St基底上制备金点阵的工作已有许多报道[‘·’‘.用导电AFM和TaPPingmodeAFM”,’‘对St进行直接氧化可在其表面加…  相似文献   

14.
To compare the effect of nitrate anions on the surface tension increments of aqueous solutions with that of halide anions, the surface tension of aqueous solutions of lithium nitrate, sodium nitrate, and potassium nitrate was measured as a function of temperature and concentration. It is shown that the surface tension of aqueous alkali metal nitrate solutions is determined primarily by the kinds of anions, since the surface tension increments of these nitrates were of the same magnitude. The importance of the electrical double layer at the surface is discussed in relation to these surface tension increments.  相似文献   

15.
Polymer layers adsorbed to a surface or in a confined environment often change their mechanical properties. There is even the possibility of solidification of the confined layer. To judge the stiffness of such a layer, we used the Hertz model to calculate the Young's modulus of the polymer layer in the confinement of AFM experiments with silicon nitride tip with a radius of curvature of R≈50 nm and a glass sphere attached to the cantilever R = 5μm. Since there is no visible indentation of the layer in the AFM experiments, the layer is either penetrated very easily, or the indentation is too small to be seen in a force curve. The latter would be the case for a polymer layer with a Young's modulus above 4×108 Pa in case of an experiment with a silicon nitride tip and 4×105 Pa in case of a glass sphere.  相似文献   

16.
The viscoelastic properties of surfaces of swollen gelatin were investigated by analyzing the Brownian motion of an atomic force microscopy (AFM) cantilever in contact with the gel surface. A micron-sized glass sphere attached to the AFM cantilever is used as the dynamic probe. When the sphere approaches the gelatin surface, there is a static repulsive force without a jump into contact. The cantilever's Brownian movement is monitored in parallel, providing access to the dynamic sphere-surface interaction as quantified by the dynamic spring constant, kappa, and the drag coefficient, xi. Gelatin is used as a model substance for a variety of other soft surfaces, where the stiffness of the gel can be varied via the solvent quality, the bloom number, and the pH. The modulus derived from the static force-distance curve is in the kPa range, consistent with the literature. However, the dynamic spring constant as derived from the Brownian motion is much larger than the static differential spring constant dF/dz. On retraction, one observes a rather strong adhesion hysteresis. The strength of the bridge (as given by the dynamic spring constant and the drag coefficient) is very small.  相似文献   

17.
We describe a silicon chip-based supported bilayer system to detect the presence of ion channels and their electrical conductance in lipid bilayers. Nanopores were produced in microfabricated silicon membranes by electron beam lithography as well as by using a finely focused ion beam. Thermal oxide was used to shrink pore sizes, if necessary, and to create an insulating surface. The chips with well-defined pores were easily mounted on a double-chamber plastic cell recording system, allowing for controlling the buffer conditions both above and below the window. The double-chamber system allowed using an atomic force microscopy (AFM) tip as one electrode and inserting a platinum wire as the second electrode under the membrane window, to measure electrical current across lipid bilayers that are suspended over the pores. Atomic force imaging, stiffness measurement, and electrical capacitance measurement show the feasibility of supporting lipid bilayers over defined nanopores: a key requirement to use any such technique for structure-function study of ion channels. Online addition of gramicidin, an ion-channel-forming peptide, resulted in electrical current flow across the bilayer, and the I-V curve that was measured using the conducting AFM tip indicates the presence of many conducting gramicidin ion channels.  相似文献   

18.
Gold surfaces, obtained by vacuum deposition of 15-nm gold films on glass and silica wafers, were studied in aqueous solutions by streaming potential measurements and colloidal-probe AFM force measurements. In the force measurements both a bare and a gold-coated silica particle (6 microm in diameter) have been used as colloidal probes. From the streaming potential measurements we determined the zeta-potential of the gold surface, while from the force measurements the diffuse double-layer potential psi(d) was obtained by fitting the data to the DLVO theory or to the nonlinear Poisson-Boltzmann equation. Measured interactions were found to be entirely due to overlap of electric double layers with no indication of attractive Van der Waals forces. Results of both types of measurements are in good agreement. The double layer potential strongly depends on the pH, probably as a result of the presence of oxide species on the gold surface. Insight in the double layer potential of polarizable interfaces such as the gold/electrolyte solution interface is the first step for understanding the effect of externally applied potentials on the adsorption behavior of charged species.  相似文献   

19.
Diamond is a promising candidate for bioapplications. Properties of hybridized DNA arrays on single-crystalline diamond are studied on a microscopic level by atomic force microscopy (AFM) in buffer solutions. Compact DNA layers in a thickness of 76 A are resolved by optimizing phase and height contrast in AFM. The height shows some long-range (30 nm) undulations of +/-5 A due to tip and DNA interactions. The axis of double helix DNA is oriented at about 36 degrees with respect to the diamond surface. DNA molecules can be removed by contact-mode AFM with forces >45 nN, indicating stronger DNA bonding than on gold substrates.  相似文献   

20.
The atomic force microscope has been extensively used not only to image nanometer-sized biological samples but also to measure their mechanical properties by using the force curve mode of the instrument. When the analysis based on the Hertz model of indentation is applied to the approach part of the force curve, one obtains information on the stiffness of the sample in terms of Young's modulus. Mapping of local stiffness over a single living cell is possible by this method. The retraction part of the force curve provides information on the adhesive interaction between the sample and the AFM tip. It is possible to functionalize the AFM tip with specific ligands so that one can target the adhesive interaction to specific pairs of ligands and receptors. The presence of specific receptors on the living cell surface has been mapped by this method. The force to break the co-operative 3D structure of globular proteins or to separate a double stranded DNA into single strands has been measured. Extension of the method for harvesting functional molecules from the cytosol or the cell surface for biochemical analysis has been reported. There is a need for the development of biochemical nano-analysis based on AFM technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号