首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We study thermodynamics of the parabolic Lemaitre-Tolman-Bondi (LTB) cosmology supported by a perfect fluid source. This model is the natural generalization of the flat Friedmann-Robertson-Walker (FRW) universe, and describes an inhomogeneous universe with spherical symmetry. After reviewing some basic equations in the parabolic LTB cosmology, we obtain a relation for the deceleration parameter in this model. We also obtain a condition for which the universe undergoes an accelerating phase at the present time. We use the first law of thermodynamics on the apparent horizon together with the Einstein field equations to get a relation for the apparent horizon entropy in LTB cosmology. We find out that in LTB model of cosmology, the apparent horizon's entropy could be feeded by a term, which incorporates the effects of the inhomogeneity. We consider this result and get a relation for the total entropy evolution, which is used to examine the generalized second law of thermodynamics for an accelerating universe. We also verify the validity of the second law and the generalized second law of thermodynamics for a universe filled with some kinds of matters bounded by the event horizon in the framework of the parabolic LTB model.  相似文献   

2.
Applying Clausius relation with energy-supply defined by the unified first law of thermodynamics formalism to the apparent horizon of a massive gravity model in cosmology proposed lately, the corrected entropic formula of the apparent horizon is obtained with the help of the modified Friedmann equations. This entropy-area relation, together with the identified Misner-Sharp internal energy, verifies the first law of thermodynamics for the apparent horizon with a volume change term for consistency. On the other hand, by means of the corrected entropy-area formula and the Clausius relation δQ=T dS, where the heat flow δQ is the energy-supply of pure matter projecting on the vector ζ tangent to the apparent horizon and should be looked on as the amount of energy crossing the apparent horizon during the time interval dt and the temperature of the apparent horizon for energy crossing during the same interval is 1/2πrA, the modified Friedmann equations governing the dynamical evolution of the universe are reproduced with the known energy density and pressure of massive graviton. The integration constant is found to correspond to a cosmological term which could be absorbed into the energy density of matter. Having established the correspondence of massive cosmology with the unified first law of thermodynamics on the apparent horizon, the validity of the generalized second law of thermodynamics is also discussed by assuming the thermal equilibrium between the apparent horizon and the matter field bounded by the apparent horizon. It is found that, in the limit Hc→0, which recovers the Minkowski reference metric solution in the flat case, the generalized second law of thermodynamics holds if α3+4α4<0. Without this condition, even for the simplest model of dRGT massive cosmology with α34=0, the generalized second law of thermodynamics could be violated.  相似文献   

3.
We investigate the validity of the generalized second law of gravitational thermodynamics on the dynamical apparent horizon in a non-flat FRW universe containing the interacting new agegraphic dark energy with dark matter. We show that for this model, the equation of state parameter can cross the phantom divide line. We also present that for the selected model under thermal equilibrium with the Hawking radiation, the generalized second law is always satisfied throughout the history of the universe. Whereas, the evolution of the entropy of the universe and dynamical apparent horizon, separately, depends on the equation of state parameter of the interacting new agegraphic dark energy model.  相似文献   

4.
Starting from the first law of thermodynamics, dE=T h ? dS h +W? dV, at the apparent horizon of a FRW universe, and assuming that the associated entropy with apparent horizon has a quantum-corrected relation, $S=\frac{A}{4G}-\alpha \ln \frac{A}{4G}+\beta \frac{4G}{A}$ , we derive modified Friedmann equations describing the dynamics of the universe with any spatial curvature. We also examine the time evolution of the total entropy including the quantum-corrected entropy associated with the apparent horizon together with the matter field entropy inside the apparent horizon. Our study shows that, with the local equilibrium assumption, the generalized second law of thermodynamics is fulfilled in a region enclosed by the apparent horizon.  相似文献   

5.
In this work, we have considered the magnetic universe in non-linear electrodynamics. The Einstein field equations for non-flat FRW model have been considered when the universe is filled with the matter and magnetic field only. We have discussed the validity of the generalized second law of thermodynamics of the magnetic universe bounded by Hubble, apparent, particle and event horizons using Gibbs? law and the first law of thermodynamics for interacting and non-interacting scenarios. It has been shown that the GSL is always satisfied for Hubble, apparent and particle horizons but for event horizon, the GSL is violated initially and satisfied at late stage of the universe.  相似文献   

6.
We investigate the validity the generalized second law of thermodynamics in a general braneworld model with curvature correction terms on the brane and in the bulk, respectively. Employing the derived entropy expression associated with the apparent horizon, we examine the time evolution of the total entropy, including the derived entropy of the apparent horizon and the entropy of the matter fields inside the apparent horizon. We show that the generalized second law of thermodynamics is fulfilled on the 3-brane embedded in the 5D spacetime with curvature corrections.  相似文献   

7.
The main goal of the present work is to investigate the validity of the second law of gravitational thermodynamics in an expanding Gödel-type universe filled with generalized Chaplygin gas interacting with cold dark matter. By assuming the Universe as a thermodynamical system bounded by the apparent horizon, and calculating separately the entropy variation for generalized Chaplygin gas, cold dark matter and for the horizon itself, we obtained an expression for the time derivative of the total entropy. We conclude that the 2nd law of gravitational thermodynamics is conditionally valid in the cosmological scenario where the generalized Chaplygin gas interacts with cold dark matter.  相似文献   

8.
Here we consider our universe as inhomogeneous spherically symmetric Lema [^(i)]{\hat{i}} tre−Tolman−Bondi Model and analyze the thermodynamics of this model of the universe. The trapping horizon is calculated and is found to coincide with the apparent horizon. The Einstein field equations are shown to be equivalent with the unified first law of thermodynamics. Finally assuming the first law of thermodynamics validity of the generalized second law of thermodynamics is examined at the apparent horizon for the perfect fluid and at the event horizon for holographic dark energy.  相似文献   

9.
In this paper, we write modified Friedman-Robertson-Walkers (FRW) equation in the form of first law of thermodynamics at the apparent horizon. We consider the universe filled with the viscous fluid. Here we employ the general expression of temperature gravity and entropy at the apparent horizon of FRW universe and obtain the generalized first law of thermodynamics at the special condition for the modified FRW equation. The generalized first law of thermodynamics help us to arrange the α 1, α 2, β 1 and β 2 in modified Friedman-Robertson-Walkers equation.  相似文献   

10.
In this paper, we discuss the thermodynamical analysis for gravitationally induced particle creation scenario in the framework of DGP braneworld model. For this purpose, we consider apparent horizon as the boundary of the universe. We take three types of entropy such as Bakenstein entropy, logarithmic corrected entropy and power law corrected entropy with ordinary creation rate \(\Gamma \). We analyze the first law and generalized second law of thermodynamics analytically for these entropies which hold under some constraints. The behavior of total entropy in each case is also discussed which implies the validity of generalized second law of thermodynamics. Also, we check the thermodynamical equilibrium condition for two phases of creation rate, that is constant and variable \(\Gamma \) and found its vitality in all cases of entropy.  相似文献   

11.
In this work, we have considered the Vaidya spacetime in null radiating fluid with perfect fluid in higher dimension and have found the solution for barotropic fluid. We have shown that the Einstein’s field equations can be obtained from Unified first law i.e., field equations and unified first law are equivalent. The first law of thermodynamics has also been constructed by Unified first law. From this, the variation of entropy function has been derived on the horizon. The variation of entropy function inside the horizon has been derived using Gibb’s law of thermodynamics. So the total variation of entropy function has been constructed at apparent and event horizons both. If we do not assume the first law, then the entropy on the both horizons can be considered by area law and the variation of total entropy has been found at both the horizons. Also the validity of generalized second law (GSL) of thermodynamics has been examined at both apparent and event horizons by using the first law and the area law separately. When we use first law of thermodynamics and Bekenstein-Hawking area law of thermodynamics, the GSL for apparent horizon in any dimensions are satisfied, but the GSL for event horizon can not be satisfied in any dimensions.  相似文献   

12.
We apply the generalized second law of thermodynamics to discriminate among quantum corrections (whether logarithmic or power-law) to the entropy of the apparent horizon in spatially Friedmann–Robertson–Walker universes. We use the corresponding modified Friedmann equations along with either Clausius relation or the principle of equipartition of the energy to set limits on the value of a characteristic parameter entering the said corrections.  相似文献   

13.
The work deals with the thermodynamics of the universe bounded by the event horizon. The matter in the universe has three constituents namely dark energy, dark matter and radiation in nature and interaction between then is assumed. The variation of entropy of the surface of the horizon is obtained from unified first law while matter entropy variation is calculated from the Gibbss’ law. Finally, validity of the generalized second law of thermodynamics is examined and conclusions are written point wise.  相似文献   

14.
15.
Recently, we have investigated the dynamics of the universe in tachyon cosmology with non-minimal coupling to matter (Farajollahi et al. in Mod Phys Lett A 26(15):1125–1135, 2011; Phys Lett B 711(3–4)15:225–231,2012; Phys Rev D 83:124042, 2011; JCAP 10:014, 20112011; JCAP 05:017, 2011). In particular, for the interacting holographic dark energy (IHDE), the model is studied in Farajollahi et al. (Astrophys Space Sci 336(2):461–467, 2011). In the current work, a significant observational program has been conducted to unveil the model’s thermodynamic properties. Our result shows that the IHDE version of our model better fits the observational data than $\Lambda $ CDM model. The first and generalized second thermodynamics laws for the universe enveloped by cosmological apparent and event horizon are revisited. From the results, both first and generalized second laws, constrained by the observational data, are satisfied on cosmological apparent horizon.In addition, the total entropy is verified with the observation only if the horizon of the universe is taken as apparent horizon. Then, due to validity of generalized second law, the current cosmic acceleration is also predicted.  相似文献   

16.
17.
A classical and quantum mechanical generalized second law of thermodynamics in cosmology implies constraints on the effective equation of state of the universe in the form of energy conditions, obeyed by many known cosmological solutions, forbids certain cosmological singularities, and is compatible with entropy bounds. This second law is based on the conjecture that causal boundaries and not only event horizons have geometric entropies proportional to their area. In string cosmology the second law provides new information about nonsingular solutions.  相似文献   

18.
We derive the Friedmann-like equations in braneworld cosmology by imposing the first law of thermodynamics and Bekenstein's area-entropy formula on the apparent horizon of a Friedmann–Robertson–Walker universe in both Randall–Sundrum II gravity and Dvali–Gabadadze–Porrati gravity models. Israel's boundary condition plays an important role in our calculations in both cases, besides the first law of thermodynamics and Bekenstein's area-entropy formula. The results indicate that thermodynamics on the brane world knows the behaviors of gravity.  相似文献   

19.
Hao Yu  Yu-Xiao Liu  Jin Li 《中国物理C(英文版)》2023,47(5):055105-055105-20
In this study, we investigate the entropies of photons, ideal gas-like dust (baryonic matter), and a special kind of dark energy in the context of cosmology. When these components expand freely with the universe, we calculate the entropy and specific entropy of each component from the perspective of statistics. Under specific assumptions and conditions, the entropies of these components can satisfy the second law of thermodynamics independently. Our calculations show that the specific entropy of matter cannot be a constant during the expansion of the universe, except for photons. When these components interact with the space-time background, particle production (annihilation) can occur. We study the influence of the interaction on the entropies of these components and obtain the conditions guaranteeing that the entropy of each component satisfies the second law of thermodynamics.  相似文献   

20.
In this work, we have considered that the flat FRW universe is filled with the mixture of dark matter and the new holographic dark energy. If there is an interaction, we have investigated the natures of deceleration parameter, statefinder and Om diagnostics. We have examined the validity of the first and generalized second laws of thermodynamics under these interactions on the event as well as apparent horizon. It has been observed that the first law is violated on the event horizon. However, the generalized second law is valid throughout the evolution of the universe enveloped by the apparent horizon. When the event horizon is considered as the enveloping horizon, the generalized second law is found to break down excepting at late stage of the universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号