首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the phase behavior and the microscopic structure of the colloidal complexes constituted from neutral/polyelectrolyte diblock copolymers and oppositely charged surfactant by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The neutral block is poly(N-isopropylacrylamide) (PNIPAM), and the polyelectrolyte block is negatively charged poly(acrylic acid) (PAA). In aqueous solution with neutral pH, PAA behaves as a weak polyelectrolyte, whereas PNIPAM is neutral and in good-solvent condition at ambient temperature, but in poor-solvent condition above approximately 32 degrees C. This block copolymer, PNIPAM-b-PAA with a narrow polydispersity, is studied in aqueous solution with an anionic surfactant, dodecyltrimethylammonium bromide (DTAB). For a low surfactant-to-polymer charge ratio Z lower than the critical value ZC, the colloidal complexes are single DTAB micelles dressed by a few PNIPAM-b-PAA. Above ZC, the colloidal complexes form a core-shell microstructure. The core of the complex consists of densely packed DTA+ micelles, most likely connected between them by PAA blocks. The intermicellar distance of the DTA+ micelles is approximately 39 A, which is independent of the charge ratio Z as well as the temperature. The corona of the complex is constituted from the thermosensitive PNIPAM. At lower temperature the macroscopic phase separation is hindered by the swollen PNIPAM chains. Above the critical temperature TC, the PNIPAM corona collapses leading to hydrophobic aggregates of the colloidal complexes.  相似文献   

2.
Core-shell nanoparticles have been prepared by irradiation of gamma-ray on block copolymer micelles consisting of hydrophilic polyacrylic acid and hydrophobic polyisoprene with each 40 monomer units. The structure was determined by means of dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and atomic force microscopy (AFM). The size distribution of the core-shell nanoparticles determined by DLS and AFM was very narrow. The average diameter of the particles decreased from 48 nm for the original micelles to 26 nm by the irradiation of 30 kGy. The core size determined by SAXS combined with DLS was roughly constant of 10 nm, irrespective of irradiation dose, whereas the shell thickness of the micelles was twice as large as the core size, and decreased with increasing irradiation dose.  相似文献   

3.
We present here oil-in-water microemulsions stabilized by charged diblock copolymers alone, along with their structural characterization by small-angle neutron scattering measurements. They consist of swollen spherical micelles containing small amounts of oil in their core, which is surrounded by a corona of stretched polyelectrolyte chains. Structural changes, including core size variations, are evidenced when using a cosurfactant, or upon addition of salt, through a contraction of the charged corona. Attempts to relate the micellar structure to the individual copolymer characteristics are also presented, and show that the size of the hydrophobic block mainly determines that of the micelles.  相似文献   

4.
Complex coacervation core micelles were prepared with various polyelectrolytes and oppositely charged diblock copolymers. The diblock copolymers consist of a charged block and a water-soluble neutral block. Our experimental technique was dynamic light scattering in combination with titrations. At mixing ratios where the excess charge of the polyelectrolyte mixture is approximately zero, micelles may be formed. The colloidal stability of these micelles depends on the block lengths of the diblock copolymers and the molecular weight of the homopolymers. In addition, the chemical nature of the corona blocks and nature of the ionic groups of the polyelectrolytes also influence the stability and aggregation mechanism. A corona block that is three times longer than the core block is a prerequisite for stable micelles. If this ratio is further increased, the molecular weight of the homopolymers as well as the type of the ionic groups starts to play a major role. With very asymmetric block length ratios, no micelles are formed. In addition, if the neutral block is too short, the polymeric mixture forms a macroscopic precipitate. With a constant core block, the aggregation number decreases with increasing corona block length, as is predicted by scaling models for polymeric micelles with a neutral corona.  相似文献   

5.
The physicochemical properties of polyion complex (PIC) micelles were investigated in order to characterize the cores constituted of electrostatic complexes of two oppositely charged polyelectrolytes. The pH-sensitive micelles were obtained with double hydrophilic block copolymers containing a poly(acrylic acid) block linked to a modified poly(ethylene oxide) block and various polyamines (polylysine, linear and branched polyethyleneimine, polyvinylpyridine, and polyallylamine). The pH range of micellization in which both components are ionized was determined for each polyamine. The resulting PIC micelles were characterized using dynamic light scattering and small-angle X-ray scattering experiments (SAXS). The PIC micelles presented a core–corona nanostructure with variable polymer density contrasts between the core and the corona, as revealed by the analysis of the SAXS curves. It was shown that PIC micelle cores constituted by polyacrylate chains and polyamines were more or less dense depending on the nature of the polyamine. It was also determined that the density of the cores of the PIC micelles depended strongly on the nature of the polyamine. These homogeneous cores were surrounded by a large hairy corona of hydrated polyethylene oxide block chains. Auramine O (AO) was successfully entrapped in the PIC micelles, and its fluorescence properties were used to get more insight on the core properties. Fluorescence data confirmed that the cores of such micelles are quite compact and that their microviscosity depended on the nature of the polyamine. The results obtained on these core–shell micelles allow contemplating a wide range of applications in which the AO probe would be replaced by various cationic drugs or other similarly charged species to form drug nanocarriers or new functional nanodevices.  相似文献   

6.
7.
We present an investigation of β-lactoglobulin adsorption onto spherical polyelectrolyte brushes (SPBs) by small angle X-ray scattering (SAXS). The SPB consists of a polystyrene core onto which long chains of poly(styrene sulfonate) are grafted. The amount and the distribution of proteins adsorbed in the brush layer at low ionic strength can be derived from SAXS. The analysis of the SAXS data reveals additionally that some of the protein molecules form aggregates of about six monomers in the adsorbed state. Furthermore, the position and the amount of slightly bound protein can be detected by the combination of the SAXS results and the SPB loading after extensive ultrafiltration. The total amount of adsorbed protein is compared to data derived from isothermal titration calorimetry. The comparison of both sets of data demonstrates that the protein molecules in the inner layers of the spherical polyelectrolyte brush are firmly bound. Proteins located in the outer layers are only weakly bound and can be washed out by prolonged ultrafiltration.  相似文献   

8.
 The structure of a series of three molecular weights of diblock copolymers polystyrene/b-isoprene with 11% volume fraction of polystyrene and low polydispersity has been investigated using small angle X-ray scattering (SAXS). In between the disordered and the BCC ordered state a micellar state with liquid-like order was found. The transition between these states was investigated in a temperature-driven experiment. Whereas the micelles appear gradually with lowering temperature the formation of the BCC ordered state occurs discontinuously at a well-defined temperature. Detailed analysis of the scattering profiles provides access to the micellar size and distance in the liquid-like as well as in the BCC state. The kinetics of the ordering transition was studied using time-resolved SAXS after temperature jumps from the liquid-like to the BCC state. The growth of the micelles and their ordering on the periodic lattice were found to occur on clearly separated time scales. Received: 12 September 1996 Accepted: 2 December 1996  相似文献   

9.
The structure of lysozyme-sodium dodecyl sulfate (SDS) complexes in solution is studied using small-angle X-ray scattering (SAXS). The SAXS data cannot be explained by the necklace and bead model for unfolded polypeptide chain interspersed with surfactant micelles. For the protein and surfactant concentrations used in the study, there is only marginal growth of SDS micelles as they complex with the protein. Being a small and rather rigid protein, lysozyme can penetrate the micellar core which is occupied by flexible and disordered paraffin chains and also the shell occupied by the hydrated head groups. A partially embedded swollen micellar model seems appropriate and describes well the scattering data. The SAXS intensity profiles are analyzed by considering the change in the electron scattering length density of the micellar core and shell due to complexation with protein and treating the intermicellar interaction using rescaled mean spherical approximation (RMSA) for charged spheres.  相似文献   

10.
Spherical micelles of the diblock copolymer/surfactant Brij 700 (C(18)EO(100)) in water (D(2)O) solution have been investigated by small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). SAXS and SANS experiments are combined to obtain complementary information from the two different contrast conditions of the two techniques. Solutions in a concentration range from 0.25 to 10 wt % and at temperatures from 10 to 80 degrees C have been investigated. The data have been analyzed on absolute scale using a model based on Monte Carlo simulations, where the micelles have a spherical homogeneous core with a graded interface surrounded by a corona of self-avoiding, semiflexible interacting chains. SANS and SAXS data were fitted simultaneously, which allows one to obtain extensive quantitative information on the structure and profile of the core and corona, the chain interactions, and the concentration effects. The model describes the scattering data very well, when part of the EO chains are taken as a "background"contribution belonging to the solvent. The effect of this becomes non-negligible at polymer concentrations as low as 2 wt %, where overlap of the micellar coronas sets in. The results from the analysis on the micellar structure, interchain interactions, and structure factor effects are all consistent with a decrease in solvent quality of water for the PEO block as the theta temperature of PEO is approached.  相似文献   

11.
The aggregation of a hydrophilic-hydrophobic diblock copolymer consisting of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(methyl methacrylate) (PMMA) in aqueous solution has been investigated by small-angle neutron scattering. This polybase is extensively protonated at low pH and forms micelles with a dense core of PMMA and a diffuse coronal layer of cationic PDMAEMA. Addition of salt induced micellar growth, brought about by charge screening and more efficient packing of the chains. As a result, the aggregation number increased from 8 up to 31. A similar effect was observed at low concentrations of an anionic surfactant, sodium dodecyl sulfate (SDS) since the net cationic charge in the hydrophilic coronal layer was reduced due to surfactant binding. However, at higher surfactant concentrations, a drastic structural reorganization occurred, as the PMMA became solubilized into the SDS micellar cores and the PDMAEMA chains interacted with the surfactant micelles, resulting in a "pearl-necklace" structure. The presence of the cationic polyelectrolyte significantly increased the population of SDS micelles by effectively lowering the critical micelle concentration of this anionic surfactant.  相似文献   

12.
In this article, we report the self‐assembly of flocculation‐resistant multimolecular micelles with thermoresponsive corona from novel dendritic heteroarm star copolymers. The micelles have a core‐shell‐corona structure at room temperature according to pyrene probe fluorescence spectrometry, proton nuclear magnetic resonance (1H NMR), transmission electron microscopy, and dynamic light scattering measurements. Increasing the temperature above the lower critical solution temperature (LCST), the micelles show high flocculation‐resistant ability resulting from a structure transition from core‐shell‐corona to core‐shell confirmed by a quantitative variable temperature 1H NMR analysis method using potassium hydrogen phthalate as an external standard. A big volume change of the micelles is observed during the LCST transition. The drug loading and temperature‐dependent release properties of the micelles are also investigated by using coumarin 102 as a model drug, which displays a rapid drug release at a temperature above the LCST. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
Aqueous dispersions of mixed egg yolk phosphatidylcholine (PC) and poly(ethylene glycol) (PEG) modified distearoyl phosphatidylethanolamine (DSPE) were investigated with the purpose of determining shape, size, and conformation of the formed mixed micelles. The samples were prepared at a range of DSPEPEG to PC molar ratios ([DSPEPEG/PC] from 100:0 to 30:70) and with, respectively, DSPEPEG2000 and DSPEPEG5000, where 2000 and 5000 refer to the molar masses of the PEG chains. Particle shape and internal structure were studied using small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS). The contrast of the micelles is different for X-rays and neutrons, and by combining SANS and SAXS, complementary information about the micelle structure was obtained. The detailed structure of the micelles was determined in a self-consistent way by fitting a model for the micelles to SANS and SAXS data simultaneously. In general, a model for the micelles with a hydrophobic core, surrounded by a dense hydrophilic layer that is again surrounded by a corona of PEG chains in the form of Gaussian random coils attached to the outer surface, is in good agreement with the scattering data. At high DSPEPEG contents, nearly spherical micelles are formed. As the PC content increases the micelles elongate, and at a DSPEPEG/PC ratio of 30:70, rodlike micelles longer than 1000 angstroms are formed. We demonstrate that by mixing DSPEPEG and PC a considerable latitude in controlling the particle shape is obtained. Our results indicate that the PEG chains in the corona are in a relatively unperturbed Gaussian random coil conformation even though the chains are far above the coil-coil overlap concentration and, therefore, interpenetrating. This observation in combination with the observed growth behavior questions that the "mushroom-brush"transition is the single dominating factor for determining the particle shape as assumed in previous theoretical work (Hristova, K.; Needham, D. Macromolecules 1995, 28, 991-1002).  相似文献   

14.
The self-assembly into wormlike micelles of a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer Pluronic P84 in aqueous salt solution (2 M NaCl) has been studied by rheology, small-angle X-ray and neutron scattering (SAXS/SANS), and light scattering. Measurements of the flow curves by controlled stress rheometry indicated phase separation under flow. SAXS on solutions subjected to capillary flow showed alignment of micelles at intermediate shear rates, although loss of alignment was observed for high shear rates. For dilute solutions, SAXS and static light scattering data on unaligned samples could be superposed over three decades in scattering vector, providing unique information on the wormlike micelle structure over several length scales. SANS data provided information on even shorter length scales, in particular, concerning "blob" scattering from the micelle corona. The data could be modeled based on a system of semiflexible self-avoiding cylinders with a circular cross-section, as described by the wormlike chain model with excluded volume interactions. The micelle structure was compared at two temperatures close to the cloud point (47 degrees C). The micellar radius was found not to vary with temperature in this region, although the contour length increased with increasing temperature, whereas the Kuhn length decreased. These variations result in an increase of the low-concentration radius of gyration with increasing temperature. This was consistent with dynamic light scattering results, and, applying theoretical results from the literature, this is in agreement with an increase in endcap energy due to changes in hydration of the poly(ethylene oxide) blocks as the temperature is increased.  相似文献   

15.
The phase behavior and structure of a four-component microemulsion system forming droplets with an oil core surrounded by the non-ionic C12E5 surfactant in water and "decorated" by long PEO chains using the block copolymer/surfactant Brij 700 has been studied. The surfactant-to-oil volume ratio, the coverage density of the droplets with decorating molecules, and the temperature were varied. For a surfactant-to-oil volume ratio of 2, the solutions form isotropic and clear solutions at room temperature, and the addition of Brij molecules stabilize the micelles: the transition to an opaque phase is shifted to higher temperatures as the surface coverage increases. At a surfactant-to-oil ratio of 1, the isotropic microemulsion phase is confined to a very narrow range of temperature, which location is shifted to increasing temperature, as the amount of Brij at the surface of the droplet is increased. For large surface coverages, the lower emulsification boundary varies roughly linearly with the surface coverage. The structure of the droplet phase was investigated by small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). For a surfactant-to-oil ratio of 2, the SANS data revealed a transition from rodlike to spherical particles when Brij molecules are added to the system, which induces a larger curvature of the surfactant film. For a surfactant-to-oil ratio of 1, the droplets are nearly spherical at all surface coverages. The intermicellar interactions effects become increasingly more pronounced as Brij is added, due to the introduction of the highly swollen corona. A quantitative analysis of some of the SAXS data was done using an advanced model based on Monte Carlo simulations. It demonstrates the strong chain-chain interactions within the corona and confirms the increased interparticle interactions, as the coverage density is increased.  相似文献   

16.
Summary: Aqueous dispersions of diblock copolymer micelles with homogeneous hydrophobic core (polystyrene) and heterogeneous amphiphilic corona from ionic N-ethyl-4-vinylpyridinium bromide (EVP) and hydrophobic 4-vinylpyridine (4VP) units have been prepared at pH 9. The structure and dispersion stability of micelles as function of the ratio and distribution pattern of ionic and hydrophobic units in corona have been systematically studied by means of transmission electron microscopy, static and dynamic light scattering, UV-spectrophotometry techniques. It was shown that gradual decrease of the quantity of EVP-units in corona had no impact on micelle structure until its fraction was above 0.7. When EVP-fraction dropped below this point noticeable changes in micelle mass and dimensions were observed. In the case of random distribution of 4VP and EVP units these changes were moderate in value and jump-like in character. In the case of mictoarm (starlike) distribution of 4VP and EVP blocks changes were large in value and monotonous in character. The presented results may be of certain use for design of polymer micelles with nanosegregated corona.  相似文献   

17.
结合流变学频率扫描和同步辐射小角X射线散射(SAXS), 研究了17R4(PO14-EO24-PO14)含量和温度对17R4/F127(EO99-PO65-EO99)混合水溶液凝胶结构的影响. 结果表明, 溶胶、 软凝胶和硬凝胶分别对应无序结构、 无序与立方相共存结构以及立方相结构. 对于F127水溶液体系, 可以将F127形成的胶束看作硬球, 随着温度的升高, 胶束的硬球半径和胶束中F127链的聚集数随之减小, 这是因为17R4在较低温度下很难形成胶束, 当温度升高时, 17R4链参与胶束的形成, 从而使胶束数目增加, 因此每个胶束中的F127链数也随之减小. 当17R4含量较高时, 胶束外壳中F127部分的PEO链段数随着温度升高而减小, 胶束外壳变得更软, 因此, 当17R4/F127摩尔比为2: 1时, 混合溶液在高温下呈现面心立方(fcc)到体心立方(bcc)的结构转变.  相似文献   

18.
光散射法研究氧化胺胶束与聚苯乙烯磺酸钠的相互作用   总被引:1,自引:0,他引:1  
采用光散射法研究了十二烷基二甲基氧化胺(DDAO)胶束与聚苯乙烯磺酸钠(NaPSS)的相互作用,浊度滴定和激光光散射结果表明,DDAO胶束与NaPSS的相互作用受介质离子强度影响,但与胶束浓度无关,浊度滴定曲线出现一个转折点(βc),而平均流体力学半径Rh对胶束离解度β的关系曲线出现2个转折点,在第一个转折点(β1)时,胶束与NaPSS开始缔合,在第二个转折点(β2)时,胶束与NaPSS的缔合达到饱和,β2相当于浊度滴定曲线的转折βc2,和β1不随离子强度而变化,采用β1和βc分别计算胶束与NaPSS发生缔合时的临界表面电荷密度,两者差距约为15%,电泳光散射也证实了β1的存在.  相似文献   

19.
20.
The selective uptake of bovine serum albumin (BSA) and β-glucosidase (β-G) by annealed and quenched cationic spherical polyelectrolyte brushes (SPB) was systematically studied by combining turbidimetric titration, dynamic light scattering and small angle X-ray scattering (SAXS). These two kinds of SPB consist of a same polystyrene core and a dense shell of poly (2-aminoethyl methacrylate hydrochloride) (PAEMH) and poly [2-(methacryloyloxy) ethyl] trimethylammonium chloride (PMAETA), respectively. Results reveal that the adsorption/desorption of proteins on SPB can be easily controlled by changing external conditions (pH and ionic strength). For a particular annealed or quenched SPB, there is a significant difference of the interaction pH regions between the brush and the two proteins, and this difference can be tuned by ionic strength. At low ionic strength, quenched brushes were more suitable for selective adsorption of BSA and β-G, while annealed brushes performed better at high ionic strength. SAXS analysis demonstrated that volume exclusion effect played a remarkable role in protein uptake by both SPB, and larger proteins were more likely to be adsorbed on the outer layer of the brush. The unique core-shell structure and controllable chain types make SPB an excellent candidate in selective adsorption/separation of proteins of different sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号