首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possibilities for the approximate treatment of higher excitations in coupled-cluster (CC) theory are discussed. Potential routes for the generalization of corresponding approximations to lower-level CC methods are analyzed for higher excitations. A general string-based algorithm is presented for the evaluation of the special contractions appearing in the equations specific to those approximate CC models. It is demonstrated that several iterative and noniterative approximations to higher excitations can be efficiently implemented with the aid of our algorithm and that the coding effort is mostly reduced to the generation of the corresponding formulas. The performance of the proposed and implemented methods for total energies is assessed with special regard to quadruple and pentuple excitations. The applicability of our approach is illustrated by benchmark calculations for the butadiene molecule. Our results demonstrate that the proposed algorithm enables us to consider the effect of quadruple excitations for molecular systems consisting of up to 10-12 atoms.  相似文献   

2.
Analytic second derivatives of energy for general coupled-cluster (CC) and configuration-interaction (CI) methods have been implemented using string-based many-body algorithms. Wave functions truncated at an arbitrary excitation level are considered. The presented method is applied to the calculation of CC and CI harmonic frequencies and nuclear magnetic resonance chemical shifts up to the full CI level for some selected systems. The present benchmarks underline the importance of higher excitations in high-accuracy calculations.  相似文献   

3.
4.
The primary characteristics of single reference coupled-cluster (CC) theory are size-extensivity and size-consistency, invariance under orbital rotations of the occupied or virtual space, the exactness of CC theory for N electron systems when the cluster operator is truncated to N-tuple excitations, and the relative insensitivity of CC theory to the choice of the reference determinant. In this work, we propose a continuous class of methods which display the desirable features of the coupled-cluster approach with single and double excitations (CCSD). These methods are closely related to the CCSD method itself and are inspired by the coupled electron pair approximation (CEPA). It is demonstrated that one can systematically improve upon CCSD and obtain geometries, harmonic vibrational frequencies, and total energies from a parameterized version of CCSD or pCCSD(α,β) by selecting a specific member from this continuous family of approaches. In particular, one finds that one such approach, the pCCSD(-1,1) method, is a significant improvement over CCSD for the calculation of equilibrium structures and harmonic frequencies. Moreover, this method behaves surprisingly well in the calculation of potential energy surfaces for single bond dissociation. It appears that this methodology has significant promise for chemical applications and may be particularly useful in applications to larger molecules within the framework of a high accuracy local correlation approach.  相似文献   

5.
We report the development of a general order relativistic coupled-cluster (CC) code. Our implementation is based on Kramers-paired molecular spinors, utilizes double group symmetry, and is applicable with the full Dirac-Coulomb and several approximate relativistic Hamiltonians. The available methods include iterative and perturbative single-reference CC approaches with arbitrary excitations as well as a state-selective multi-reference CC ansatz. To illustrate the performance of the new code, benchmark calculations have been performed for the total energies, bond lengths, and vibrational frequencies of the monoxides of Group IVa elements. The trends due to the simultaneous inclusion of relativity as well as higher-order electron correlation effects are analyzed. The newly developed code significantly widens the scope of the ab initio relativistic calculations, for both molecules and atoms alike, surpassing the accuracy and reliability of the currently available implementations in the literature.  相似文献   

6.
An algorithm for generation of the spin-orbital diagrammatic representation, the corresponding algebraical formulas, and the computer code of the coupled cluster (CC) method with an arbitrary level of the electronic excitations developed earlier in our laboratory have been employed to generate the CAS(2,2)CCSD code. CAS(2,2)CCSD is the state-specific, multireference coupled cluster (SSMRCC) approach with single and double excitations based on the CASSCF(2,2) reference wave function. The CAS(2,2)CCSD was used to describe the model process of inserting the Be atom into the H2 molecule. We show that our method performs better than the “fully-blown” SSMRCC approach of Mukherjee and coworkers (J Chem Phys 110:6171, 1999).  相似文献   

7.
The method of moments of coupled-cluster equations (MMCC), which provides a systematic way of improving the results of the standard coupled-cluster (CC) and equation-of-motion CC (EOMCC) calculations for the ground- and excited-state energies of atomic and molecular systems, is described. The MMCC theory and its generalized MMCC (GMMCC) extension that enables one to use the cluster operators resulting from the standard as well as nonstandard CC calculations, including those obtained with the extended CC (ECC) approaches, are based on rigorous mathematical relationships that define the many-body structure of the differences between the full configuration interaction (CI) and CC or EOMCC energies. These relationships can be used to design the noniterative corrections to the CC/EOMCC energies that work for chemical bond breaking and potential energy surfaces of excited electronic states, including excited states dominated by double excitations, where the standard single-reference CC/EOMCC methods fail. Several MMCC and GMMCC approximations are discussed, including the renormalized and completely renormalized CC/EOMCC methods for closed- and open-shell states, the quadratic MMCC approaches, the CI-corrected MMCC methods, and the GMMCC approaches for multiple bond breaking based on the ECC cluster amplitudes.  相似文献   

8.
The curse of dimensionality (COD) limits the current state-of-the-art ab initio propagation methods for non-relativistic quantum mechanics to relatively few particles. For stationary structure calculations, the coupled-cluster (CC) method overcomes the COD in the sense that the method scales polynomially with the number of particles while still being size-consistent and extensive. We generalize the CC method to the time domain while allowing the single-particle functions to vary in an adaptive fashion as well, thereby creating a highly flexible, polynomially scaling approximation to the time-dependent Schro?dinger equation. The method inherits size-consistency and extensivity from the CC method. The method is dubbed orbital-adaptive time-dependent coupled-cluster, and is a hierarchy of approximations to the now standard multi-configurational time-dependent Hartree method for fermions. A numerical experiment is also given.  相似文献   

9.
We report the implementation of the spin-conserving and spin-flipping variants of the equation-of-motion (EOM) coupled-cluster (CC) model, which includes single and double excitations in the CC part and single, double, and triple excitations in the EOM part, i.e., EOM-CC(2,3) [Hirata, Nooijen, Bartlett, Chem. Phys. Lett. 326, 255 (2000)] for closed- and open-shell references. Inclusion of triples significantly improves the accuracy of EOM-CCSD for excitation energies (EOM-EE-CCSD) and its spin-flip (SF) counterpart, EOM-SF-CCSD, especially when the reference wave function is strongly spin-contaminated. A less computationally demanding active space variant with semi-internal triples has also been implemented. The capabilities of full and active space EOM-CC(2,3) are demonstrated by applications to CO(+) and CH radicals as well as to the methylene and trimethylenemethane diradicals and the dehydro-m-xylylene triradical.  相似文献   

10.
Using string-based algorithms excitation energies and analytic first derivatives for excited states have been implemented for general coupled-cluster (CC) models within CC linear-response (LR) theory which is equivalent to the equation-of-motion (EOM) CC approach for these quantities. Transition moments between the ground and excited states are also considered in the framework of linear-response theory. The presented procedures are applicable to both single-reference-type and multireference-type CC wave functions independently of the excitation manifold constituting the cluster operator and the space in which the effective Hamiltonian is diagonalized. The performance of different LR-CC/EOM-CC and configuration-interaction approaches for excited states is compared. The effect of higher excitations on excited-state properties is demonstrated in benchmark calculations for NH(2) and NH(3). As a first application, the stationary points of the S(1) surface of acetylene are characterized by high-accuracy calculations.  相似文献   

11.
The conjugate residual with optimal trial vectors (CROP) algorithm is developed. In this algorithm, the optimal trial vectors of the iterations are used as basis vectors in the iterative subspace. For linear equations and nonlinear equations with a small-to-medium nonlinearity, the iterative subspace may be truncated to a three-dimensional subspace with no or little loss of convergence rate, and the norm of the residual decreases in each iteration. The efficiency of the algorithm is demonstrated by solving the equations of coupled-cluster theory with single and double excitations in the atomic orbital basis. By performing calculations on H(2)O with various bond lengths, the algorithm is tested for varying degrees of nonlinearity. In general, the CROP algorithm with a three-dimensional subspace exhibits fast and stable convergence and outperforms the standard direct inversion in iterative subspace method.  相似文献   

12.
The multi-ionization equation-of-motion coupled-cluster (CC) method is developed for multireference (MR) problems. It is operationally single reference, depending upon a formal matrix diagonalization step to define the coefficients in the wavefunction in an unbiased way that allows for important MR character. The method is illustrated for the autoisomerization of cyclobutadiene, which has a very large multireference effect and compared to other MR-CC results. The newly implemented methods are also used to obtain the vertical double ionization (DI) potentials of several small molecules (H(2)O, CO, C(2)H(2), C(2)H(4)). Also, the performance of the new methods is analyzed by plotting the potential energy curve for twisted ethylene as a function of a dihedral angle between two methylenes. Evaluation of the total molecular energy via MR-DI-CC calculations makes it possible to avoid an unphysical cusp.  相似文献   

13.
The natural linear-scaled coupled-cluster (NLSCC) method ( Flocke, N.; Bartlett, R. J. J. Chem. Phys. 2004, 121, 10935 ) is extended to include approximate triple excitations via a coupled-cluster with single, double, and triple excitation method (CCSDT-3). The triples contribution can potentially be embedded in a larger singles and doubles region. NLSCC exploits the extensivity of the CC wave function to represent it in terms of transferable natural localized molecular orbitals (NLMOs) or functional groups thereof that are obtained from small quantum mechanical (QM) regions. Both occupied and virtual NLMOs are local because they derive from the single-particle density matrix. Noncanonical triples amplitudes are avoided by applying the unitary localization matrix to the canonical CC wave function for a QM region. A generalized NLMO code interfaced to the ACES II quantum chemistry software package provides NLMOs for the relevant number of atoms in a given functional group. Applications include linear polyglycine and the pentapeptide met-enkephalin, which was chosen as a more realistic three-dimensional system with nontrivial side chains. The results show that the triples contributions are quite large for aromatic bonds suggesting an interesting active space method for triples in which different bonds require different excitation levels. The NLSCC approach recovers a very large percentage (>99%) of the CCSD or CCSDT-3 correlation energy.  相似文献   

14.
15.
The recently proposed universal state-selective (USS) corrections [K. Kowalski, J. Chem. Phys. 134, 194107 (2011)] to approximate multi-reference coupled-cluster (MRCC) energies can be commonly applied to any type of MRCC theory based on the Jeziorski-Monkhorst [B. Jeziorski and H. J. Monkhorst, Phys. Rev. A 24, 1668 (1981)] exponential ansatz. In this paper we report on the performance of a simple USS correction to the Brillouin-Wigner and Mukherjee's MRCC approaches employing single and double excitations (USS-BW-MRCCSD and USS-Mk-MRCCSD). It is shown that the USS-BW-MRCCSD correction, which employs the manifold of single and double excitations, can be related to a posteriori corrections utilized in routine BW-MRCCSD calculations. In several benchmark calculations we compare the USS-BW-MRCCSD and USS-Mk-MRCCSD results with the results obtained with the full configuration interaction method.  相似文献   

16.
17.
The capabilities of the recently developed multireference, general-model-space (GMS), state-universal (SU) coupled-cluster (CC) method have been extended in order to enable the handling of any excited state that represents a single (S) or a double (D) excitation relative to the ground state. A series of calculations concerning the ground and excited states of the CH(+), HF, F(2), H(2)O, NH(2), and CH(2) molecules were carried out so as to assess the performance of the GMS SU CCSD method. For diatomics we have computed the entire potential energy curves, while for triatomics we have focused on vertical excitation energies. We demonstrate how a systematic enlargement of the model space enables a consideration of a larger and larger number of excited states. A comparison of the CC and full configuration interaction or large-scale CI results enables an assessment of the accuracy and reliability of the GMS SU CCSD method within a given basis set. In all cases very good results have been obtained, including highly excited states and those having a doubly-excited character.  相似文献   

18.
We propose a new computational protocol to obtain highly accurate theoretical reference data. This protocol employs the explicitly correlated coupled-cluster method with iterative single and double excitations as well as perturbative triple excitations, CCSD(T)(F12), using quadruple-z\zeta basis sets. Higher excitations are accounted for by conventional CCSDT(Q) calculations using double-z\zeta basis sets, while core/core-valence correlation effects are estimated by conventional CCSD(T) calculations using quadruple-z\zeta basis sets. Finally, scalar-relativistic effects are accounted for by conventional CCSD(T) calculations using triple-z\zeta basis sets. In the present article, this protocol is applied to the popular test sets AE6 and BH6. An error analysis shows that the new reference values obtained by our computational protocol have an uncertainty of less than 1 kcal/mol (chemical accuracy). Furthermore, concerning the atomization energies, a cancellation of the basis set incompleteness error in the CCSD(T)(F12) perturbative triples contribution with the corresponding error in the contribution from higher excitations is observed. This error cancellation is diminished by the CCSD(T*)(F12) method. Thus, we recommend the use of the CCSD(T*)(F12) method only for small- and medium-sized basis sets, while the CCSD(T)(F12) approach is preferred for high-accuracy calculations in large basis sets.  相似文献   

19.
The frozen natural orbital (FNO) coupled-cluster method increases the speed of coupled-cluster (CC) calculations by an order of magnitude with no consequential error along a potential energy surface. This method allows the virtual space of a correlated calculation to be reduced by about half, significantly reducing the time spent performing the coupled-cluster (CC) calculation. This paper reports the derivation and implementation of analytical gradients for FNO-CC, including all orbital relaxation for both noncanonical and semicanonical perturbed orbitals. These derivatives introduce several new orbital relaxation contributions to the CC density matrices. FNO-CCSD(T) and FNO-LambdaCCSD(T) are applied to a test set of equilibrium structures, verifying that these methods are capable of reproducing geometries and vibrational frequencies accurately, as well as energies. Several decomposition pathways of nitroethane are investigated using CCSD(T) and LambdaCCSD(T) with 60% of the FNO virtual orbitals in a cc-pVTZ basis, and find differences on the order of 5 kcalmol with reordering of the transition state energies when compared to B3LYP 6-311 + G(3df, 2p).  相似文献   

20.
A two-component closed-shell coupled-cluster (CC) approach using relativistic effective core potentials with spin-orbit coupling included in the post-Hartree-Fock treatment is proposed and implemented at the CC singles and doubles (CCSD) level as well as at the CCSD level augmented by a perturbative treatment of triple excitations [CCSD(T)]. The latter invokes as an additional approximation the neglect of the occupied-occupied and virtual-virtual blocks of the spin-orbit coupling matrix in order to avoid the iterative N(7) steps in the treatment of triple excitations. The computational effort of the implemented two-component CC methods is about 10-15 times that of its corresponding nonrelativistic counterpart, which needs to be compared to the by a factor of 32 higher cost for fully relativistic schemes and schemes with spin-orbit coupling included already at the Hartree-Fock self-consistent field (HF-SCF) level. This substantial computational saving is due to the use of real molecular orbitals and real two-electron integrals. Results on 5p-, 6p-, and 7p-block element compounds show that the bond lengths and harmonic frequencies obtained with the present two-component CCSD method agree well with those computed with the CCSD approach including spin-orbit coupling at the HF-SCF level even for the 7p-block element compounds. As for the CCSD(T) approach, high accuracy for 5p- and 6p-block element compounds is retained. However, the difference in bond lengths and harmonic frequencies becomes somewhat more pronounced for the 7p-block element compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号