首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This paper is concerned mainly with the logarithmic Bloch space ℬlog  which consists of those functions f which are analytic in the unit disc \mathbbD{\mathbb{D}} and satisfy sup|z| < 1(1-|z|)log\frac11-|z||f(z)| < ¥\sup_{\vert z\vert <1}(1-\vert z\vert )\log\frac{1}{1-\vert z\vert}\vert f^{\prime}(z)\vert <\infty , and the analytic Besov spaces B p , 1≤p<∞. They are all subspaces of the space VMOA. We study the relation between these spaces, paying special attention to the membership of univalent functions in them. We give explicit examples of:
•  A bounded univalent function in $\bigcup_{p>1}B^{p}$\bigcup_{p>1}B^{p} but not in the logarithmic Bloch space.  相似文献   

2.
A string is a pair (L, \mathfrakm){(L, \mathfrak{m})} where L ? [0, ¥]{L \in[0, \infty]} and \mathfrakm{\mathfrak{m}} is a positive, possibly unbounded, Borel measure supported on [0, L]; we think of L as the length of the string and of \mathfrakm{\mathfrak{m}} as its mass density. To each string a differential operator acting in the space L2(\mathfrakm){L^2(\mathfrak{m})} is associated. Namely, the Kreĭn–Feller differential operator -D\mathfrakmDx{-D_{\mathfrak{m}}D_x} ; its eigenvalue equation can be written, e.g., as
f(x) + z ò0L f(yd\mathfrakm(y) = 0,    x ? \mathbb Rf(0-) = 0.f^{\prime}(x) + z \int_0^L f(y)\,d\mathfrak{m}(y) = 0,\quad x \in\mathbb R,\ f^{\prime}(0-) = 0.  相似文献   

3.
Let Co(α) denote the class of concave univalent functions in the unit disk ${\mathbb{D}}$ . Each function ${f\in Co(\alpha)}$ maps the unit disk ${\mathbb{D}}$ onto the complement of an unbounded convex set. In this paper we find the exact disk of variability for the functional ${(1-|z|^2)\left ( f^{\prime\prime}(z)/f^{\prime}(z)\right), f\in Co(\alpha)}$ . In particular, this gives sharp upper and lower estimates for the pre-Schwarzian norm of concave univalent functions. Next we obtain the set of variability of the functional ${(1-|z|^2)\left(f^{\prime\prime}(z)/f^{\prime}(z)\right), f\in Co(\alpha)}$ whenever f′′(0) is fixed. We also give a characterization for concave functions in terms of Hadamard convolution. In addition to sharp coefficient inequalities, we prove that functions in Co(α) belong to the H p space for p < 1/α.  相似文献   

4.
The composition operators on weighted Bloch space   总被引:9,自引:0,他引:9  
We will characterize the boundedness and compactness of the composition operators on weighted Bloch space B log = { f ? H(D): supz ? D (1-| z|2) ( log\frac21-| z|2 )| f¢(z)| B_{ \log }= \{ f \in H(D): \sup_{z \in D } (1-\left| z\right|^2) \left( \log \frac{2}{1-\left| z\right|^2} \right)\left| f'(z)\right| < +¥} +\infty \} , where H(D) be the class of all analytic functions on D.  相似文献   

5.
Let Ω and Π be two finitely connected hyperbolic domains in the complex plane \Bbb C{\Bbb C} and let R(z, Ω) denote the hyperbolic radius of Ω at z and R(w, Π) the hyperbolic radius of Π at w. We consider functions f that are analytic in Ω and such that all values f(z) lie in the domain Π. This set of analytic functions is denoted by A(Ω, Π). We prove among other things that the quantities Cn(W,P) := supf ? A(W,P)supz ? W\frac|f(n)(z)| R(f(z),P)n! (R(z,W))nC_n(\Omega,\Pi)\,:=\,\sup_{f\in A(\Omega,\Pi)}\sup_{z\in \Omega}\frac{\vert f^{(n)}(z)\vert\,R(f(z),\Pi)}{n!\,(R(z,\Omega))^n} are finite for all n ? \Bbb N{n \in {\Bbb N}} if and only if ∂Ω and ∂Π do not contain isolated points.  相似文献   

6.
Qingliu Yao 《Acta Appl Math》2010,110(2):871-883
This paper studies the existence of a positive solution to the second-order periodic boundary value problem
u¢¢(t)+l(t)u(t)=f(t,u(t)),    0 < t < 2p,  u(0)=u(2p), u(0)=u(2p),u^{\prime \prime }(t)+\lambda (t)u(t)=f\bigl(t,u(t)\bigr),\quad 0相似文献   

7.
Let f be an isometric embedding of the dual polar space ${\Delta = DQ(2n, {\mathbb K})}Let f be an isometric embedding of the dual polar space D = DQ(2n, \mathbb K){\Delta = DQ(2n, {\mathbb K})} into D¢ = DQ(2n, \mathbb K¢){\Delta^\prime = DQ(2n, {\mathbb K}^\prime)}. Let P denote the point-set of Δ and let e¢: D¢? S¢ @ PG(2n - 1, \mathbb K¢){e^\prime : \Delta^\prime \rightarrow {\Sigma^\prime} \cong {\rm PG}(2^n - 1, {{\mathbb K}^\prime})} denote the spin-embedding of Δ′. We show that for every locally singular hyperplane H of Δ, there exists a unique locally singular hyperplane H′ of Δ′ such that f(H) = f(P) ?H¢{f(H) = f(P) \cap H^\prime}. We use this to show that there exists a subgeometry S @ PG(2n - 1, \mathbb K){\Sigma \cong {\rm PG}(2^n - 1, {\mathbb K})} of Σ′ such that: (i) e¢°f (x) ? S{e^\prime \circ f (x) \in \Sigma} for every point x of D; (ii) e : = e¢°f{\Delta; ({\rm ii})\,e := e^\prime \circ f} defines a full embedding of Δ into Σ, which is isomorphic to the spin-embedding of Δ.  相似文献   

8.
Let \mathbb Dn:={z=(z1,?, zn) ? \mathbb Cn:|zj| < 1,   j=1,?, n}{\mathbb {D}^n:=\{z=(z_1,\ldots, z_n)\in \mathbb {C}^n:|z_j| < 1, \;j=1,\ldots, n\}}, and let [`(\mathbbD)]n{\overline{\mathbb{D}}^n} denote its closure in \mathbb Cn{\mathbb {C}^n}. Consider the ring
Cr([`(\mathbbD)]n;\mathbb C) = {f:[`(\mathbbD)]n? \mathbb C:f   is   continuous   and  f(z)=[`(f([`(z)]))]   (z ? [`(\mathbbD)]n)}C_{\rm r}(\overline{\mathbb{D}}^n;\mathbb {C}) =\left\{f: \overline{\mathbb{D}}^n\rightarrow \mathbb {C}:f \,\, {\rm is \,\, continuous \,\, and}\,\, f(z)=\overline{f(\overline{z})} \;(z\in \overline{\mathbb{D}}^n)\right\}  相似文献   

9.
Let A denote the class of analytic functions f, in the open unit disk E = {z : |z| < 1}, normalized by f(0) = f′(0) − 1 = 0. In this paper, we introduce and study the class STn,al,m(h){ST^{n,\alpha}_{\lambda,m}(h)} of functions f ? A{f\in A}, with \fracDn,al fm(z)z 1 0{\frac{D^{n,\alpha}_\lambda f_m(z)}{z}\neq 0}, satisfying
\fracz(Dn,al f(z))¢Dn,al fm(z)\prec h(z),    z ? E,\frac{z\left(D^{n,\alpha}_\lambda f(z)\right)'}{D^{n,\alpha}_\lambda f_m(z)}\prec h(z),\quad z\in E,  相似文献   

10.
Consider the model f(S(z|X)){\phi(S(z|X))} = \pmbb(z) [(X)\vec]{\pmb{\beta}(z) {\vec{X}}}, where f{\phi} is a known link function, S(·|X) is the survival function of a response Y given a covariate X, [(X)\vec]{\vec{X}} = (1, X, X 2 , . . . , X p ) and \pmbb(z){\pmb{\beta}(z)} is an unknown vector of time-dependent regression coefficients. The response is subject to left truncation and right censoring. Under this model, which reduces for special choices of f{\phi} to e.g. Cox proportional hazards model or the additive hazards model with time dependent coefficients, we study the estimation of the vector \pmbb(z){\pmb{\beta}(z)} . A least squares approach is proposed and the asymptotic properties of the proposed estimator are established. The estimator is also compared with a competing maximum likelihood based estimator by means of simulations. Finally, the method is applied to a larynx cancer data set.  相似文献   

11.
Some necessary and sufficient conditions for nonoscillation are established for the second order nonlinear differential equation (r(t)y(x(t))|x(t)|p-1x(t))+c(t)f(x(t))=0,    t 3 t0,(r(t)\psi(x(t))\vert x^{\prime}(t)\vert^{p-1}x^{\prime}(t))^{\prime}+c(t)f(x(t))=0,\quad t\ge t_0,  相似文献   

12.
Consider j = f +[`(g)]\varphi = f + \overline {g}, where f and g are polynomials, and let TjT_{\varphi} be the Toeplitz operators with the symbol j\varphi. It is known that if TjT_{\varphi} is hyponormal then |f¢(z)|2 3 |g¢(z)|2|f'(z)|^{2} \geq |g'(z)|^{2} on the unit circle in the complex plane. In this paper, we show that it is also a necessary and sufficient condition under certain assumptions. Furthermore, we present some necessary conditions for the hyponormality of TjT_{\varphi} on the weighted Bergman space, which generalize the results of I. S. Hwang and J. Lee.  相似文献   

13.
We introduce a class of infinite matrices (Ass, s, s¢ ? \mathbbZd){(A_{ss\prime}, s, s\prime \in \mathbb{Z}^d)} , which are asymptotically (as |s| + |s′| → ∞) close to Hankel–T?plitz matrices. We prove that this class forms an algebra, and that flow-maps of nonautonomous linear equations with coefficients from the class also belong to it.  相似文献   

14.
We consider the weighted Bergman spaces HL2(\mathbb Bd, ml){\mathcal {H}L^{2}(\mathbb {B}^{d}, \mu_{\lambda})}, where we set dml(z) = cl(1-|z|2)l dt(z){d\mu_{\lambda}(z) = c_{\lambda}(1-|z|^2)^{\lambda} d\tau(z)}, with τ being the hyperbolic volume measure. These spaces are nonzero if and only if λ > d. For 0 < λ ≤ d, spaces with the same formula for the reproducing kernel can be defined using a Sobolev-type norm. We define Toeplitz operators on these generalized Bergman spaces and investigate their properties. Specifically, we describe classes of symbols for which the corresponding Toeplitz operators can be defined as bounded operators or as a Hilbert–Schmidt operators on the generalized Bergman spaces.  相似文献   

15.
Let B denote the unit ball in [(?)\tilde] \widetilde{\nabla\hskip-4pt}\hskip4pt denote the volume measure and gradient with respect to the Bergman metric on B. In the paper we consider the weighted Dirichlet spaces Dg{{\cal D}_{\gamma}} , $\gamma > (n-1)$\gamma > (n-1) , and weighted Bergman spaces Apa{A^p_{\alpha}} , 0 < p < ¥0 < p < \infty , $\alpha > n$\alpha > n , of holomorphic functions f on B for which Dgf)D_{\gamma}(\,f) and || f||Apa\Vert\, f\Vert_{A^p_{\alpha}} respectively are finite, where Dgf)=òB (1-|z|2)g|[(?)\tilde]  f(z)|2dt(z),D_{\gamma}(\,f)=\int_B (1-\vert z\vert^2)^{\gamma}\vert\widetilde{\nabla\hskip-4pt}\hskip4pt f(z)\vert^2d\tau(z), and || f||pApaB(1-|z|2)af(z)|pdt(z).\Vert\, f\Vert^p_{A^p_{\alpha}}=\int_B(1-\vert z\vert^2)^{\alpha}\vert\, f(z)\vert^pd\tau(z). The main result of the paper is the following theorem.Theorem 1. Let f be holomorphic on B and $\alpha > n$\alpha > n .  相似文献   

16.
We prove that every set of n ≥ 3 points in \mathbbR2{\mathbb{R}^2} can be slightly perturbed to a set of n points in \mathbbQ2{\mathbb{Q}^2} so that at least 3(n − 2) of mutual distances between those new points are rational numbers. Some special rational triangles that are arbitrarily close to a given triangle are also considered. Given a triangle ABC, we show that for each ε > 0 there is a triangle ABC′ with rational sides and at least one rational median such that |AA′|, |BB′|, |CC′| < ε and a Heronian triangle A′′B′′C′′ with three rational internal angle bisectors such that A¢¢, B¢¢, C¢¢ ? \mathbbQ2{A^{\prime\prime}, B^{\prime\prime}, C^{\prime\prime} \in \mathbb{Q}^2} and |AA′′|, |BB′′|, |CC′′| < ε.  相似文献   

17.
We define a generalized Li coefficient for the L-functions attached to the Rankin–Selberg convolution of two cuspidal unitary automorphic representations π and π of GLm(\mathbbAF)GL_{m}(\mathbb{A}_{F}) and GLm(\mathbbAF)GL_{m^{\prime }}(\mathbb{A}_{F}) . Using the explicit formula, we obtain an arithmetic representation of the n th Li coefficient lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) attached to L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}^{\prime }) . Then, we deduce a full asymptotic expansion of the archimedean contribution to lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) and investigate the contribution of the finite (non-archimedean) term. Under the generalized Riemann hypothesis (GRH) on non-trivial zeros of L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}^{\prime }) , the nth Li coefficient lp,p(n)\lambda _{\pi ,\pi ^{\prime }}(n) is evaluated in a different way and it is shown that GRH implies the bound towards a generalized Ramanujan conjecture for the archimedean Langlands parameters μ π (v,j) of π. Namely, we prove that under GRH for L(s,pf×[(p)\tilde]f)L(s,\pi _{f}\times \widetilde{\pi}_{f}) one has |Remp(v,j)| £ \frac14|\mathop {\mathrm {Re}}\mu_{\pi}(v,j)|\leq \frac{1}{4} for all archimedean places v at which π is unramified and all j=1,…,m.  相似文献   

18.
We consider the space A(\mathbbT)A(\mathbb{T}) of all continuous functions f on the circle \mathbbT\mathbb{T} such that the sequence of Fourier coefficients [^(f)] = { [^(f)]( k ), k ? \mathbbZ }\hat f = \left\{ {\hat f\left( k \right), k \in \mathbb{Z}} \right\} belongs to l 1(ℤ). The norm on A(\mathbbT)A(\mathbb{T}) is defined by || f ||A(\mathbbT) = || [^(f)] ||l1 (\mathbbZ)\left\| f \right\|_{A(\mathbb{T})} = \left\| {\hat f} \right\|_{l^1 (\mathbb{Z})}. According to the well-known Beurling-Helson theorem, if f:\mathbbT ? \mathbbT\phi :\mathbb{T} \to \mathbb{T} is a continuous mapping such that || einf ||A(\mathbbT) = O(1)\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = O(1), n ∈ ℤ then φ is linear. It was conjectured by Kahane that the same conclusion about φ is true under the assumption that || einf ||A(\mathbbT) = o( log| n | )\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\log \left| n \right|} \right). We show that if $\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right)$\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right), then φ is linear.  相似文献   

19.
Let W í \Bbb C\Omega \subseteq {\Bbb C} be a simply connected domain in \Bbb C{\Bbb C} , such that {¥} è[ \Bbb C \[`(W)]]\{\infty\} \cup [ {\Bbb C} \setminus \bar{\Omega}] is connected. If g is holomorphic in Ω and every derivative of g extends continuously on [`(W)]\bar{\Omega} , then we write gA (Ω). For gA (Ω) and z ? [`(W)]\zeta \in \bar{\Omega} we denote SN (g,z)(z) = ?Nl=0\fracg(l) (z)l ! (z-z)lS_N (g,\zeta )(z)= \sum^{N}_{l=0}\frac{g^{(l)} (\zeta )}{l !} (z-\zeta )^l . We prove the existence of a function fA(Ω), such that the following hold:
i)  There exists a strictly increasing sequence μn ∈ {0, 1, 2, …}, n = 1, 2, …, such that, for every pair of compact sets Γ, Δ ⊂ [`(W)]\bar{\Omega} and every l ∈ {0, 1, 2, …} we have supz ? G supw ? D \frac?l?wl Smnf,z) (w)-f(l)(w) ? 0,    as n ? + ¥    and\sup_{\zeta \in \Gamma} \sup_{w \in \Delta} \frac{\partial^l}{\partial w^l} S_{\mu_ n} (\,f,\zeta) (w)-f^{(l)}(w) \rightarrow 0, \hskip 7.8pt {\rm as}\,n \rightarrow + \infty \quad {\rm and}
ii)  For every compact set K ì \Bbb CK \subset {\Bbb C} with K?[`(W)] = ?K\cap \bar{\Omega} =\emptyset and Kc connected and every function h: K? \Bbb Ch: K\rightarrow {\Bbb C} continuous on K and holomorphic in K0, there exists a subsequence { m¢n }n=1\{ \mu^\prime _n \}^{\infty}_{n=1} of {mn }n=1\{\mu_n \}^{\infty}_{n=1} , such that, for every compact set L ì [`(W)]L \subset \bar{\Omega} we have supz ? L supz ? K Sm¢nf,z)(z)-h(z) ? 0,    as  n? + ¥.\sup_{\zeta \in L} \sup_{z\in K} S_{\mu^\prime _n} (\,f,\zeta )(z)-h(z) \rightarrow 0, \hskip 7.8pt {\rm as} \, n\rightarrow + \infty .
  相似文献   

20.
It is proved that if Ω ⊂ Rn {R^n}  is a bounded Lipschitz domain, then the inequality || u ||1 \leqslant c(n)\textdiam( W)òW | eD(u) | {\left\| u \right\|_1} \leqslant c(n){\text{diam}}\left( \Omega \right)\int\limits_\Omega {\left| {{\varepsilon^D}(u)} \right|} is valid for functions of bounded deformation vanishing on ∂Ω. Here eD(u) {\varepsilon^D}(u) denotes the deviatoric part of the symmetric gradient and òW | eD(u) | \int\limits_\Omega {\left| {{\varepsilon^D}(u)} \right|} stands for the total variation of the tensor-valued measure eD(u) {\varepsilon^D}(u) . Further results concern possible extensions of this Poincaré-type inequality. Bibliography: 27 titles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号