首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anomalous properties of a pairing gap in cuprate superconductors have been explained under the assumption that their electron systems in the normal phase exhibit a fermion condensate, i.e., a set of dispersionless states close to the nominal Fermi surface. It has been shown that exactly the fermion condensate is responsible for D-state pairing in cuprates. More specifically, the effective Coulomb repulsion in the Cooper channel, which prevents the existence of superconductivity in normal metals in the S channel, makes it high-temperature in the D channel.  相似文献   

2.
The pairing correlations of the nucleus 120Sn are calculated by solving the Nambu–Gor’kov equations, including medium polarization effects resulting from the interweaving of quasiparticles, spin and density vibrations, taking into account, within the framework of nuclear field theory (NFT), processes leading to self-energy and vertex corrections and to the induced pairing interaction. From these results one can not only demonstrate the inevitability of the dual origin of pairing in nuclei, but also extract information which can be used at profit to quantitatively disentangle the contributions to the pairing gap Δ arising from the bare and from the induced pairing interaction. The first is the strong 1 S 0 short-range NN potential resulting from meson exchange between nucleons moving in time reversal states within an energy range of hundreds of MeV from the Fermi energy. The second results from the exchange of vibrational modes between nucleons moving within few MeV from the Fermi energy. Short- (v p bare) and long-range (v p ind) pairing interactions contribute essentially equally to nuclear Cooper pair stability. That is to the breaking of gauge invariance in open-shell superfluid nuclei and thus to the order parameter, namely to the ground state expectation value of the pair creation operator. In other words, to the emergent property of generalized rigidity in gauge space, and associated rotational bands and Cooper pair tunneling between members of these bands.  相似文献   

3.
4.
The uniform model for the nuclear pairing-force problem is extended to take into account the effect of fluctuations in nucleon orbital level densityρ and in pairing matrix elementsG vv. Simple formulas for the average dependence of level density on energy are presented, and alternative ways of estimating effects of shell bunching on the pairing correlation are derived. It is argued also that the pairing constantG might be systematically overestimated in the usual BCS numerical calculations; a semiconstant pairing force with diagonal elements larger than off-diagonal is thus suggested.  相似文献   

5.
The opinion that the K = 0 fission channel is completely closed if the spin J and the parity π of the nucleus undergoing fission do not satisfy the condition (?1) J = π is widespread. On the basis of a detailed analysis of quantum numbers characterizing the rotational states of deformed nuclei, it is shown that this opinion is erroneous. In fact, the K = 0 channel may be partly open. Its suppression is caused by special features of fission barriers in the state being considered. It is also shown that factors that suppress the K = 0channel may exist even in states characterized by J and π values such that they satisfy the condition (?1) J = π. More precise information about the contribution of the K = 0 channel may be obtained by measuring the hexadecapole component of the angular distribution of fragments originating from the slow-neutron-induced fission of aligned nuclei.  相似文献   

6.
The emergence of the pairing effect of identical nucleons in the j = 9/2 state in low-lying excited states of nuclei near 90Zr (N = 50, Z = 40) is discussed. Multiplets of states with seniority s ≥ 2, the splitting of which is determined by the proton pairing energy, are clearly visible in the nuclear spectra for a chain of N = 50 isotones. A comparison of the spectra of ground state multiplets, calculated in the δ-interaction approximation, with experimental data and results from other theoretical calculations shows this approach can be used to describe the structure of spectra and level positions with high J values.  相似文献   

7.
By using the constrained path quantum Monte carlo method, we study the ground state paring correlations in the t ? U ? V Hubbard model on the triangular lattice. It is shown that pairings with various symmetries dominate in different electron filling regions. The pairing correlation with fn-wave symmetry dominates over other pairings around half fillings, and as the electron filling decreases away from the half filling, the d + id-wave pairing correlation tends to dominate. As the electron filling is bellow the Van Hove singularity, the f-wave pairing dominates. These crossovers are due to the interplay of electronic correlation and geometric frustration, associating with the competition between the antiferromagnetic correlations and ferromagnetic fluctuations. Our findings reveal the possible magnetic origin of superconductivity, and also provide useful information for the understanding of superconductivity in Na x CoO2·H2O and the organic compounds.  相似文献   

8.
Values of neutron–proton pairing based on mass relations are estimated. It is shown that substantially different formulas for calculating the np-pairing energy in self-conjugate nuclei yield similar results. Comparison of the obtained values and the structure of ground state multiplet spectra shows that mass relations can be used to describe the isovector (T = 1) component of np-pairing to sufficient accuracy, but provides little or no information on isoscalar component T = 0.  相似文献   

9.
10.
The evolution of the surface morphology of LPCVD poly-Si films (deposition temperature 620°C), a-Si films (deposition temperature 550°C) and poly-Si films, obtained by the crystallization of a-Si is investigated in the thickness range 40–500 nm. It is found that upon an increase in the thickness from 40 to 500 nm, the surface roughness (parameters S q , S z , S v ) is increased for poly-Si, while in the case of a-Si and poly-Si obtained by crystallization a-Si, on the contrary, decreases. The correlation length (S al ) increases for all three types of silicon films. Poly-Si films, obtained by the crystallization of a-Si, as compared to LPCVD poly-Si films have a significantly lower surface roughness, respectively, S q two times less at a thickness of 40 nm and sixteen times less at 500 nm. In contrast to thick films, thin a-Si films (at thicknesses of less than 40 nm) have a granular structure, which is especially pronounced at an average thickness of about 20 nm and there is a maximum on the dependence of the roughness S q on the thickness.  相似文献   

11.
A microscopic theory of superconductivity in the extended Hubbard model which takes into account the intersite Coulomb repulsion and electron-phonon interaction is developed in the limit of strong correlations. The Dyson equation for normal and pair Green functions expressed in terms of the Hubbard operators is derived. The self-energy is obtained in the noncrossing approximation. In the normal state, antiferromagnetic short-range correlations result in the electronic spectrum with a narrow bandwidth. We calculate superconducting T c by taking into account the pairing mediated by charge and spin fluctuations and phonons. We found the d-wave pairing with high-T c mediated by spin fluctuations induced by the strong kinematic interaction for the Hubbard operators. Contributions to the d-wave pairing coming from the intersite Coulomb repulsion and phonons turned out to be small.  相似文献   

12.
The production of charged ρ mesons on nuclei and nucleons is investigated in charged current neutrino interactions at moderate energies (〈E ≈ 10 GeV), using the data obtained with SKAT bubble chamber. No strong nuclear effects are observed in ρ + and ρ ? production. The fractions of charged and neutral pions originating from ρ decays are obtained and compared with higher-energy data. From analysis of the obtained and available data on ρ + and K*+(892) neutrino production, the strangeness suppression factor is extracted: λ s = 0.18 ± 0.03. Estimation is obtained for cross section of coherent ρ + neutrino production on nuclei.  相似文献   

13.
Motivated by the controversy on the pairing symmetry of layered organic superconductors,we study electronic Raman scattering spectra on a frustrating lattice. A two-dimensionalt-t′-J-J′model and the Gutzwiller projectional variational method is used. The pairing symmetry isobtained self-consistently. Basing on this, we perform a systematic investigation of thedensity of states and electronic Raman spectra as a function oft′/t: ranging fromt′ = 0, the square lattice model, tot′ = t, the isotropic triangular latticemodel. We discuss the polarization dependence of the Raman spectra, which could be used toidentify the relevant superconducting pairing symmetry of frustrating systems such aslayered organic superconductors.  相似文献   

14.
A three-dimensional (3D) boundary value problem for the Eilenberger function has been microscopically derived. It is applicable for describing the proximity effect in ferromagnet/superconductor (F/S) nanostructures, where the superconductivity is the superposition of the BCS pairing with zero total momentum in the S layers and the pairing through the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) mechanism with nonzero 3D momentum of pairs k in the F layers. It has been shown that continuous matching at the F/S interface occurs only for the pair amplitudes with the same space symmetry. When two pairing types are simultaneously present, the processes of mutual transformations between LOFF and BCS pairs at the F/S interface occur as Umklapp processes through surface states. The phase diagrams of the surface states with the mixed BCS + LOFF pairing type have been analyzed. Superconductivity localized at the F/S interface has been predicted.  相似文献   

15.
A microscopic theory of superconductivity is considered in the framework of the Hubbard p-d model for the CuO2 plane. The Dyson equation is derived in the nonintersecting diagram approximation using the projection technique for the matrix Green function of the Hubbard operator. The solution of the equation for the superconducting gap shows that interband transitions for Hubbard subbands lead to antiferromagnetic exchange pairing as in the t-J model, while intraband transitions additionally lead to spin-fluctuation pairing of the d-wave type. The calculated dependences of the superconducting transition temperature on the hole concentration and of the gap on the wave vector are in qualitative agreement with experiments.  相似文献   

16.
A compilation of the known data on Coulomb energy differences of isobaric doublets and isobaric triplets is given. Plots of the Coulomb energy differences versus¯Z/A 1/3 with¯Z=(Z 1+Z 2)/2 show an analogous shell structure behaviour for the three series with 2¯Z=A?1,A andA+1 (T=1, 1/2 and 1), i.e. discontinuities at the closed shells atA=4, 16 and 40 and the closed subshell atA=32 and oscillations mainly being due to Coulomb proton-proton pairing energy. A positive energy shift of the lowest states withT=1 of all self-conjugate nuclei withA=4n+2 seems to be indicated by the experimental data. A semi-empirical formula is given that describes the data.  相似文献   

17.
We study the transport through the Kitaev chain with incommensurate potentials coupled to two normal leads by the numerical operator method. We find a quantized linear conductance of e 2 / h, which is independent to the disorder strength and the gate voltage in a wide range, signaling the Majorana bound states. While the incommensurate potential suppresses the current at finite voltage bias, and then narrows the linear response regime of the I-V curve which exhibits two plateaus corresponding to the superconducting gap and the band edge, respectively. The linear conductance abruptly drops to zero as the disorder strength reaches the critical value 2g s + 2Δ with Δ the p-wave pairing amplitude and g s the hopping between neighbor sites, corresponding to the transition from the topological superconducting phase to the Anderson localized phase. Changing the gate voltage also causes an abrupt drop of the linear conductance by driving the chain into the topologically trivial superconducting phase, whose I-V curve exhibits an exponential shape.  相似文献   

18.
Ever since the pioneering work of Bardeen, Cooper and Schrieffer in the 1950s, exploring novel pairing mechanisms for fermion superfluids has become one of the central tasks in modern physics. Here, we investigate a new type of fermion superfluid with hybridized s- and p-wave pairings in an ultracold spin-1/2 Fermi gas. Its occurrence is facilitated by the co-existence of comparable s- and p-wave interactions, which is realizable in a two-component 40K Fermi gas with close-by s- and p-wave Feshbach resonances. The hybridized superfluid state is stable over a considerable parameter region on the phase diagram, and can lead to intriguing patterns of spin densities and pairing fields in momentum space. In particular, it can induce a phase-locked p-wave pairing in the fermion species that has no p-wave interactions. The hybridized nature of this novel superfluid can also be confirmed by measuring the s- and p-wave contacts, which can be extracted from the high-momentum tail of the momentum distribution of each spin component. These results enrich our knowledge of pairing superfluidity in Fermi systems, and open the avenue for achieving novel fermion superfluids with multiple partial-wave scatterings in cold atomic gases.  相似文献   

19.
We investigate the pairing symmetry of the Kondo-Heisenberg model on triangular lattice, which is believed to capture the core competition of Kondo screening and local magnetic exchange interaction in heavy electron compounds. On the dominant background of the heavy fermion state, the introduction of the Heisenberg antiferromagnetic interaction (J H ) leads to superconducting pairing instability. Depending on the strength of the interactions, it is found that the pairing symmetry favours an extended s-wave for small J H and high conduction electron density but a chiral \(d_{x^2 - y^2 } + id_{xy}\)-wave for large J H and low conduction electron density, which provides a phase diagram of pairing symmetry from the calculations of the ground-state energy. The transition between these two pairing symmetries is found to be first-order. Furthermore, we also analyze the phase diagram from the pairing strengths and find that the phase diagram obtained is qualitatively consistent with that based on the ground-state energy. In addition, we propose an effective single-band BCS Hamiltonian, which is able to describe the low-energy thermodynamic behaviors of the heavy fermion superconducting states. These results further deepen the understanding of the antiferromagnetic interaction which results in a geometric frustration for the model studied. Our work may provide a possible scenario to understand the pairing symmetry of the heavy fermion superconductivity, which is one of active issues in very recent years.  相似文献   

20.
Based on the assumption that the superconducting state belongs to a single irreducible representation of lattice symmetry, we propose that the pairing symmetry in all measured iron-based superconductors is generally consistent with the A 1g s-wave. Robust s-wave pairing throughout the different families of iron-based superconductors at different doping regions signals two fundamental principles behind high-T c superconducting mechanisms: (i) the correspondence principle: the short-range magnetic-exchange interactions and the Fermi surfaces act collaboratively to achieve high-T c superconductivity and determine pairing symmetries; (ii) the magnetic-selection pairing rule: superconductivity is only induced by the magnetic-exchange couplings from the super-exchange mechanism through cation-anion-cation chemical bonding. These principles explain why unconventional high-T c superconductivity appears to be such a rare but robust phenomena, with its strict requirements regarding the electronic environment. The results will help us to identify new electronic structures that can support high-T c superconductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号