首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The PF6- salt of the dinuclear [(bpy)2Ru(1)Os(bpy)2]4+ complex, where 1 is a phenylacetylene macrocycle which incorporates two 2,2'-bipyridine (bpy) chelating units in opposite sites of its shape-persistent structure, was prepared. In acetonitrile solution, the Ru- and Os-based units display their characteristic absorption spectra and electrochemical properties as in the parent homodinuclear compounds. The luminescence spectrum, however, shows that the emission band of the Ru(II) unit is almost completely quenched with concomitant sensitization of the emission of the Os(II) unit. Electronic energy transfer from the Ru(II) to the Os(II) unit takes place by two distinct processes (k(en) = 2.0x10(8) and 2.2x10(7) s(-1) at 298 K). Oxidation of the Os(II) unit of [(bpy)2Ru(1)Os(bpy)2]4+ by Ce(IV) or nitric acid leads quantitatively to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ complex which exhibits a bpy-to-Os(III) charge-transfer band at 720 nm (epsilon(max) = 250 M(-1) cm(-1)). Light excitation of the Ru(II) unit of [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ is followed by electron transfer from the Ru(II) to the Os(III) unit (k(el,f) = 1.6x10(8) and 2.7x10(7) s(-1)), resulting in the transient formation of the [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ complex. The latter species relaxes to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ one by back electron transfer (k(el,b) = 9.1x10(7) and 1.2x10(7) s(-1)). The biexponential decays of the [(bpy)2*Ru(II)(1)Os(II)(bpy)2]4+, [(bpy)2*Ru(II)(1)Os(III)(bpy)2]5+, and [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ species are related to the presence of two conformers, as expected because of the steric hindrance between hydrogen atoms of the pyridine and phenyl rings. Comparison of the results obtained with those previously reported for other Ru-Os polypyridine complexes shows that the macrocyclic ligand 1 is a relatively poor conducting bridge.  相似文献   

2.
The synthesis and characterization of new Ru(II) and Os(II) complexes of the ligand eilatin (1) are described. The new complexes [Ru(bpy)(eil)(2)](2+) (2), [Ru(eil)(3)](2+) (3), and [Os(eil)(3)](2+) (4) (bpy = 2,2'-bipyridine; eil = eilatin) were synthesized and characterized by NMR, fast atom bombardment mass spectrometry, and elemental analysis. In the series of complexes [Ru(bpy)(x)(eil)(y)()](2+) (x + y = 3), the effect of sequential substitution of eil for bpy on the electrochemical and photophysical properties was examined. The absorption spectra of the complexes exhibit several bpy- and eil-associated pi-pi and metal-to-ligand charge-transfer (MLCT) transitions in the visible region (400-600 nm), whose energy and relative intensity depend on the number of ligands bound to the metal center (x and y). On going from [Ru(bpy)(2)(eil)](2+) (5) to 2 to 3, the d(pi)(Ru) --> pi(eil) MLCT transition undergoes a red shift from 583 to 591 to 599 nm, respectively. Electrochemical measurements performed in dimethyl sulfoxide reveal several ligand-based reduction processes, where each eil ligand can accept up to two electrons at potentials that are significantly anodically shifted (by ca. 1 V) with respect to the bpy ligands. The complexes exhibit near-IR emission (900-1100 nm) of typical (3)MLCT character, both at room temperature and at 77 K. Along the series 5, 2, and 3, upon substitution of eil for bpy, the emission maxima undergo a blue shift and the quantum yields and lifetimes increase. The radiative and nonradiative processes that contribute to deactivation of the excited level are discussed in detail.  相似文献   

3.
The 77 K emission spectra of 21 [Ru(L) 4bpy] ( m+ ) complexes for which the Ru/bpy metal-to-ligand-charge-transfer ( (3)MLCT) excited-state energies vary from 12 500 to 18 500 cm (-1) have vibronic contributions to their bandshapes that implicate excited-state distortions in low frequency ( lf; hnu lf < 1000 cm (-1)), largely metal-ligand vibrational modes which most likely result from configurational mixing between the (3)MLCT and a higher energy metal centered ( (3)LF) excited state. The amplitudes of the lf vibronic contributions are often comparable to, or sometimes greater than those of medium frequency ( mf; hnu mf > 1000 cm (-1)), largely bipyridine (bpy) vibrational modes, and for the [Ru(bpy) 3] (2+) and [Ru(NH 3) 4bpy] (2+) complexes they are consistent with previously reported resonance-Raman (rR) parameters. However, far smaller lf vibronic amplitudes in the rR parameters have been reported for [Os(bpy) 3 ] (2+), and this leads to a group frequency approach for interpreting the 77 K emission bandshapes of [Ru(L) 4bpy] ( m+ ) complexes with the vibronic contributions from mf vibrational modes referenced to the [Os(bpy) 3] (2+) rR parameters (OB3 model) and the envelope of lf vibronic components represented by a "progression" in an "equivalent" single vibrational mode ( lf1 model). The lf1 model is referenced to rR parameters reported for [Ru(NH 3) 4bpy] (2+). The observation of lf vibronic components indicates that the MLCT excited-state potential energy surfaces of Ru-bpy complexes are distorted by LF/MLCT excited-state/excited-state configurational mixing, but the emission spectra only probe the region near the (3)MLCT potential energy minimum, and the mixing can lead to larger distortions elsewhere with potential photochemical implications: (a) such distortions may labilize the (3)MLCT excited state; and (b) the lf vibrational modes may contribute to a temperature dependent pathway for nonradiative relaxation.  相似文献   

4.
This work describes a study of Ru(II) and Os(II) polypyridyl complexes of the symmetrical, fused-aromatic bridging ligand dibenzoeilatin (1). The synthesis, purification, and structural characterization by NMR of the mononuclear complexes [Ru(bpy)(2)(dbneil)](2+) (2), [Ru(tmbpy)(2)(dbneil)](2+) (3), and [Os(bpy)(2)(dbneil)](2+) (4), the homodinuclear complexes [[Ru(bpy)(2)](2)[micro-dbneil]](4+) (5), [[Ru(tmbpy)(2)](2)[micro-dbneil]](4+) (6), and [[Os(bpy)(2)](2)[micro-dbneil]](4+) (7), and the heterodinuclear complex [[Ru(bpy)(2)][micro-dbneil][Os(bpy)(2)]](4+) (8) are described, along with the crystal structures of 4, 6, and 7. Absorption spectra of the mononuclear complexes feature a low-lying MLCT band around 600 nm. The coordination of a second metal fragment results in a dramatic red shift of the MLCT band to beyond 700 nm. Cyclic and square wave voltammograms of the mononuclear complexes exhibit one reversible metal-based oxidation, as well as several ligand-based reduction waves. The first two reductions, attributed to reduction of the dibenzoeilatin ligand, are substantially anodically shifted compared to [M(bpy)(3)](2+) (M = Ru, Os), consistent with the low-lying pi orbital of dibenzoeilatin. The dinuclear complexes exhibit two reversible, well-resolved, metal-centered oxidation waves, despite the chemical equivalence of the two metal centers, indicating a significant metal-metal interaction mediated by the conjugated dibenzoeilatin ligand. Luminescence spectra, quantum yield, and lifetime measurements at room temperature in argon-purged acetonitrile have shown that the complexes exhibit (3)MLCT emission, which occurs in the IR-region between 950 and 1300 nm. The heterodinuclear complex 8 exhibits luminescence only from the Ru-based fragment, the intensity of which is less than 1% of that observed in the corresponding homodinuclear complex 5; no emission from the Os-based unit is observed, and an intramolecular quenching constant of k(q) > or = 3 x10(9) s(-)(1) is evaluated. The nature of the quenching process is briefly discussed.  相似文献   

5.
A series of mono-, di-, and tetranuclear homo/heterometallic complexes of Ru(II) and Os(II) based on the bridging ligand dppz(11-11')dppz (where dppz = dipyrido[3,2-a:2',3'-c]phenazine) (BL) have been synthesized and characterized. This bridging ligand is a long rigid rod with only one rotational degree of freedom and provides complete conjugation between the chromophores. The complexes synthesized are of general formula [(bpy)(2)Ru-BL](2+), [(phen)(2)/(bpy)(2)M-BL-M(bpy)(2)/(phen)(2)](4+) (M = Ru(II) and Os(II)), [(bpy)(2)Ru-BL-Os(bpy)(2)](4+), and [((bpy)(2)Ru-BL)(3)M](8+). Detailed (1)H NMR studies of these complexes revealed that each chiral center does not influence its neighbor because of the long distance between the metal centers and the superimposed resonances of the diastereoisomers, which allowed the unambiguous assignment of the signals, particularly for homonuclear complexes. Concentration-dependent (1)H NMR studies show molecular aggregation of the mono- and dinuclear complexes in solution by pi-pi stacking. Electrospray mass spectrometry data are consistent with dimerization of mono- and dinuclear complexes in solution. Electrochemical studies show oxidations of Ru(II) and Os(II) in the potential ranges +1.38 to +1.40 and +0.92 to +1.01 V, respectively. The bridging ligand exhibits two one-electron reductions, and it appears that the added electrons are localized on the phenazene moieties of the spacer. All of these complexes show strong metal-to-ligand charge-transfer (MLCT) absorption and (3)MLCT luminescence at room temperature. Quantum yields have been calculated, and the emission lifetimes of all complexes have been measured by laser flash photolysis experiments. The luminescence intensity and lifetime data suggest that the emission due to the Ru center of the heteronuclear complexes is strongly quenched (>90%) compared to that of the corresponding model complexes. This quenching is attributed to intramolecular energy transfer from the Ru(II) center to the Os(II) center (k = (3-5) x 10(7) s(-1)) across the bridging ligand.  相似文献   

6.
The synthesis and photophysical and electrochemical properties of tris(homoleptic) complexes [Ru(tpbpy)3](PF6)2 (1) and [Os(tpbpy)3](PF6)2 (2) (tpbpy = 6'-tolyl-2,2':4',2' '-terpyridine) are reported. The ligand tpbpy is formed as the side product during the synthesis of 4'-tolyl-2,2':6',2' '-terpyridine (ttpy) and characterized by single-crystal X-ray diffraction: monoclinic, P21/c. The tridentate tpbpy coordinates as a bidentate ligand. The complexes 1 and 2 exhibit two intense absorption bands in the UV region (200-350 nm) assignable to the ligand-centered (1LC) pi-pi* transitions. The ruthenium(II) complex exhibits a broad absorption band at 470 nm while the osmium(II) complex exhibits an intense absorption band at 485 nm and a weak band at 659 nm assignable to the MLCT (dpi-pi*) transitions. A red shifting of the dpi-pi* MLCT transition is observed on going from the Ru(II) to the Os(II) complex as expected from the high-lying dpi Os orbitals. These complexes exhibit ligand-sensitized emission at 732 and 736 nm, respectively, upon light excitation onto their MLCT band through excitation of higher energy LC bands at room temperature. The MLCT transitions and the emission maxima of 1 and 2 are substantially red-shifted compared to that of [Ru(bpy)3](PF6)2 and [Os(bpy)3](PF6)2. The emission of both the complexes in the presence of acid is completely quenched indicating that the emission is not due to the protonation of the coordinated ligands. Our results indicate the occurrence of intramolecular energy transfer from the ligand to the metal center. Both the complexes undergo quasi-reversible metal-centered oxidation, and the E1/2 values for the M(II)/M(III) redox couples (0.94 and 0.50 V versus Ag/Ag+ for 1 and 2, respectively) are cathodically shifted with respect to that of [Ru(bpy)3](PF6)2 and [Os(bpy)3](PF6)2 (E1/2 = 1.28 and 1.09 V versus Ag/Ag+, respectively). The tris(homoleptic) Ru(II) and Os(II) complexes 1 and 2 could be used to construct polynuclear complexes by using the modular synthetic approach in coordination compounds by exploiting the coordinating ability of the pyridine substituent. Furthermore, these complexes offer the possibility of studying the influence of electron-withdrawing and electron-donating substituents on the photophysical properties of Ru(II) and Os(II) polypyridine complexes.  相似文献   

7.
Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at room temperature to populate the lowest-lying (3)CS state population of the emissive (3)MLCT state.  相似文献   

8.
Novel polynuclear complexes of rhenium and ruthenium containing PCA (PCA = 4-pyridinecarboxaldehyde azine or 4-pyridinealdazine or 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene) as a bridging ligand have been synthesized as PF(6-) salts and characterized by spectroscopic, electrochemical, and photophysical techniques. The precursor mononuclear complex, of formula [Re(Me(2)bpy)(CO)(3)(PCA)](+) (Me(2)bpy = 4,4'-dimethyl-2,2'-bipyridine), does not emit at room temperature in CH(3)CN, and the transient spectrum found by flash photolysis at lambda(exc) = 355 nm can be assigned to a MLCT (metal-to-ligand charge transfer) excited state [(Me(2)bpy)(CO)(3)Re(II)(PCA(-))](+), with lambda(max) = 460 nm and tau < 10 ns. The spectral properties of the related complexes [[Re(Me(2)bpy)(CO)(3)}(2)(PCA)](2+), [Re(CO)(3)(PCA)(2)Cl], and [Re(CO)(3)Cl](3)(PCA)(4) confirm the existence of this low-energy MLCT state. The dinuclear complex, of formula [(Me(2)bpy)(CO)(3)Re(I)(PCA)Ru(II)(NH(3))(5)](3+), presents an intense absorption in the visible spectrum that can be assigned to a MLCT d(pi)(Ru) --> pi(PCA); in CH(3)CN, the value of lambda (max) = 560 nm is intermediate between those determined for [Ru(NH(3))(5)(PCA)](2+) (lambda(max) = 536 nm) and [(NH(3))(5)Ru(PCA)Ru(NH(3))(5)](4+) (lambda(max) = 574 nm), indicating a significant decrease in the energy of the pi-orbital of PCA. The mixed-valent species, of formula [(Me(2)bpy)(CO)(3)Re(I)(PCA)Ru(III)(NH(3))(5)](4+), was obtained in CH(3)CN solution, by bromine oxidation or by controlled-potential electrolysis at 0.8 V in a OTTLE cell of the [Re(I),Ru(II)] precursor; the band at lambda(max) = 560 nm disappears completely, and a new band appears at lambda(max) = 483 nm, assignable to a MMCT band (metal-to-metal charge transfer) Re(I) --> Ru(III). By using the Marcus-Hush formalism, both the electronic coupling (H(AB)) and the reorganization energy (lambda) for the metal-to-metal intramolecular electron transfer have been calculated. Despite the considerable distance between both metal centers (approximately 15.0 Angstroms), there is a moderate coupling that, together with the comproportionation constant of the mixed-valent species [(NH(3))(5)Ru(PCA)Ru(NH(3))(5)](5+) (K(c) approximately 10(2), in CH(3)CN), puts into evidence an unusual enhancement of the metal-metal coupling in the bridged PCA complexes. This effect can be accounted for by the large extent of "metal-ligand interface", as shown by DFT calculations on free PCA. Moreover, lambda is lower than the driving force -DeltaG degrees for the recombination charge reaction [Re(II),Ru(II)] --> [Re(I),Ru(III)] that follows light excitation of the mixed-valent species. It is then predicted that this reverse reaction falls in the Marcus inverted region, making the heterodinuclear [Re(I),Ru(III)] complex a promising model for controlling the efficiency of charge-separation processes.  相似文献   

9.
The physical and photophysical properties of a series of monometallic, [Ru(bpy)(2)(dmb)](2+), [Ru(bpy)(2)(BPY)](2+), [Ru(bpy)(Obpy)](2+) and [Ru(bpy)(2)(Obpy)](2+), and bimetallic, [{Ru(bpy)(2)}(2)(BPY)](4+) and [{Ru(bpy)(2)}(2)(Obpy)](4+), complexes are examined, where bpy is 2,2'-bipyridine, dmb is 4,4'-dimethyl-2,2'-bipyridine, BPY is 1,2-bis(4-methyl-2,2'-bipyridin-4'-yl)ethane, and Obpy is 1,2-bis(2,2'-bipyridin-6-yl)ethane. The complexes display metal-to-ligand charge transfer transitions in the 450 nm region, intraligand pi --> pi transitions at energies greater than 300 nm, a reversible oxidation of the ruthenium(II) center in the 1.25-1.40 V vs SSCE region, a series of three reductions associated with each coordinated ligand commencing at -1.3 V and ending at approximately -1.9 V, and emission from a (3)MLCT state having energy maxima between 598 and 610 nm. The Ru(III)/Ru(II) oxidation of the two bimetallic complexes is a single, two one-electron process. Relative to [Ru(bpy)(2)(BPY)](2+), the Ru(III)/Ru(II) potential for [Ru(bpy)(2)(Obpy)](2+) increases from 1.24 to 1.35 V, the room temperature emission lifetime decreases from 740 to 3 ns, and the emission quantum yield decreases from 0.078 to 0.000 23. Similarly, relative to [{Ru(bpy)(2)}(2)(BPY)](4+), the Ru(III)/Ru(II) potential for [{Ru(bpy)(2)}(2)(Obpy)](4+) increases from 1.28 to 1.32 V, the room temperature emission lifetime decreases from 770 to 3 ns, and the room temperature emission quantum yield decreases from 0.079 to 0.000 26. Emission lifetimes measured in 4:1 ethanol:methanol were temperature dependent over 90-360 K. In the fluid environment, emission lifetimes display a biexponential energy dependence ranging from 100 to 241 cm(-)(1) for the first energy of activation and 2300-4300 cm(-)(1) for the second one. The smaller energy is attributed to changes in the local matrix of the chromophores and the larger energy of activation to population of a higher energy dd state. Explanations for the variations in physical properties are based on molecular mechanics calculations which reveal that the Ru-N bond distance increases from 2.05 ? (from Ru(II) to bpy and BPY) to 2.08 ? (from Ru(II) to Obpy) and that the metal-to-metal distance increases from approximately 7.5 ? for [{Ru(bpy)(2)}(2)(Obpy)](4+) to approximately 14 ? for [{Ru(bpy)(2)}(2)(BPY)](4+).  相似文献   

10.
The preparation, structural features, electrochemical behavior, and optical properties (at room temperature and at 77 K) are reported for a series of thiophene-containing hybrids based on the bent conjugated backbone of a rigid ditopic ligand, the dimeric moiety 3,4-dibutyl-2,5-bis{5'-[(3,4-dibutylthien-2-ylethynyl)-2,2'-bipyridin-5-yl]ethynyl}thiophene (TBTBT). Within the dimer, the diethynyl-2,2'-bipyridine units (bpy, the coordination sites) alternate with three 3,4-dibuthylthiophene units and coordination of the [Re(CO)3Cl], [Ru(bpy)2]2+, and [Os(bpy)2]2+ centers results in the mononuclear species RuTBTBT and OsTBTBT and the binuclear species RuTBTBTRu, OsTBTBTOs, RuTBTBTOs, and ReTBTBTOs. At room temperature, the emitting states obtained by photoexcitation are of 3MLCT nature, and vibronic analysis of the emission spectra indicates that they are largely delocalized over the TBTBT ligand. In the binuclear species, the intermetal separation is ca. 17 A, and for RuTBTBTOs, an efficient Ru --> Os excitation transfer takes place, resulting solely in an Os-based emission. The process is ascribed to double-electron transfer (Dexter), as mediated by the TBTBT ligand; a similar conclusion holds for the case of ReTBTBTOs. For RuTBTBTOs, the process is discussed in some detail also with regard to the possibility of disentangling the constituent hole and electron-transfer events.  相似文献   

11.
The mixed-metal supramolecular complexes [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 (tpy = 2,2':6',2'-terpyridine and tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine) were synthesized and characterized. These complexes contain ruthenium bridged by tppz to platinum centers to form stereochemically defined linear assemblies. X-ray crystallographic determinations of the two complexes confirm the identity of the metal complexes and reveal intermolecular interactions of the Pt sites in the solid state for [(tpy)Ru(tppz)PtCl](PF6)3 with a Pt...Pt distance of 3.3218(5) A. The (1)H NMR spectra show the expected splitting patterns characteristic of stereochemically defined mixed-metal systems and are assigned with the use of (1)H-(1)H COSY and NOESY. Electronic absorption spectroscopy displays intense ligand-based pi --> pi* transitions in the UV and MLCT transitions in the visible. Electrochemically [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 display reversible Ru (II/III) couples at 1.63 and 1.83 V versus Ag/AgCl, respectively. The complexes display very low potential tppz (0/-) and tppz(-/2-) couples, relative to their monometallic synthons, [(tpy)Ru(tppz)](PF6)2 and [Ru(tppz)2](PF6)2, consistent with the bridging coordination of the tppz ligand. The Ru(dpi) --> tppz(pi*) MLCT transitions are also red-shifted relative to the monometallic synthons occurring in the visible centered at 530 and 538 nm in CH3CN for [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4, respectively. The complex [(tpy)Ru(tppz)PtCl](PF6)3 displays a barely detectable emission from the Ru(dpi) --> tppz(pi*) (3)MLCT in CH 3CN solution at RT. In contrast, [ClPt(tppz)Ru(tppz)PtCl](PF6)4 displays an intense emission from the Ru(dpi) --> tppz(pi*) (3)MLCT state at RT with lambda max(em) = 754 nm and tau = 80 ns.  相似文献   

12.
This work describes the synthesis and characterization of mononuclear and dinuclear Ru(II) and Os(II) complexes based on the symmetrical bridging ligand isoeilatin (1). The crystal structure of 1.[HCl]2 consists of layers of tightly pi-stacked molecules of the biprotonated isoeilatin. The mononuclear complexes [Ru(bpy)2(ieil)]2+ (2(2+)) and [Os(bpy)2(ieil)]2+ (3(2+)) form discrete dimers in solution held together by face-selective pi-stacking interactions via the isoeilatin ligand. Coordination of a second metal fragment does not hinder the pi-stacking completely, as demonstrated by the concentration dependence of the 1H NMR spectra of the dinuclear complexes [{Ru(bpy)2}2{mu-ieil}]4+ (4(4+)), [{Os(bpy)2}2{mu-ieil}]4+ (5(4+)), and [{Ru(bpy)2}{mu-ieil}{Os(bpy)2}]4+ (6(4+)) and supported by the solid-state structure of meso-4.[Cl]4. The bridging isoeilatin ligand conserves its planarity even upon coordination of a second metal fragment, as demonstrated in the solid-state structures of meso-4.[Cl]4, meso-4.[PF6]4, and meso-5.[PF6]4. All of the dinuclear complexes exhibit a preference (3/2-3/1) for the formation of the heterochiral as opposed to the homochiral diastereoisomer. Absorption spectra of the mononuclear complexes feature a low-lying dpi(M) --> pi*iel MLCT band around 600 nm that shifts to beyond 700 nm upon coordination of a second metal fragment. Cyclic and square-wave voltammetry measurements of the complexes exhibit two isoeilatin-based reduction waves that are substantially anodically shifted compared to [M(bpy)3]2+ (M = Ru, Os). Luminescence spectra, quantum yields, and lifetime measurements at room temperature and at 77 K demonstrate that the complexes exhibit 3MLCT emission that occurs in the IR region between 950 and 1300 nm. Both the electrochemical and photophysical data are consistent with the low-lying pi orbital of the isoeilatin ligand. The dinuclear complexes exhibit two reversible, well-resolved, metal-centered oxidation waves, despite the chemical equivalence of the two metal centers, indicating a significant metal-metal interaction mediated by the bridging isoeilatin ligand.  相似文献   

13.
New Ru polypyridine complexes [(bpy)2Ru(L)]2+, where bpy = 2,2'-bipyridine and L = dipyrido[3,2-a:2',3'-c]-phenazine-2-carboxylic acid (dppzc), dipyrido[3,2-f:2',3'-h]quinoxaline-2,3-dicarboxylic acid (dpq(COOH)2), 3-hydroxydipyrido[3,2-f:2',3'-h]quinoxaline-2-carboxylic acid (dpq(OHCOOH)), 2,3-dihydroxydipyrido[3,2-f:2',3'-h]quinoxaline (dpq(OH)2), and [(L')Ru(dppzc)2]2+, where L' = bpy and 1,10-phenanthroline (phen), have been synthesized, characterized, and anchored to nanocrystalline TiO2 electrodes for light to electrical energy conversion in regenerative photoelectrochemical cells with I-/I2 acetonitrile electrolyte. These sensitizers have intense metal-to-ligand charge-transfer (MLCT) bands centered at approximately 450 nm. The effect of pH on the absorption and emission spectra of these complexes consisting of protonatable ligands has been investigated in water by spectrophotometric titration. The excited-state pKa values are more basic than the ground-state ones, except the pKa2 and pKa2* in [(bpy)2Ru(dpq(OH)2)]2+, which are equal, suggesting the localization of the lowest-energy MLCT on heteroaromatic bridging ligands, dppzc and dpq. Incident photon-to-current conversion efficiency (IPCE) is sensitive to the structural changes that resulted from introducing different functional groups, used for grafting.  相似文献   

14.
The ultrafast excited-state dynamics of three structurally related platinum(II) complexes has been investigated using femtosecond transient absorption spectrometry in 2-methyltetrahydrofuran (MTHF). Previous work has shown that Pt(dbbpy)(C[triple bond]C-Ph)2 (dbbpy is 4,4'-di(tert-butyl)-2,2'-bipyridine and C[triple bond]C-Ph is ethynylbenzene) has a lowest metal-to-ligand charge transfer (3MLCT) excited state, while the multichromophoric Pt(dbbpy)(C[triple bond]C-pyrene)2 (CC-pyrene is 1-ethynylpyrene) contains the MLCT state, but possesses a lowest intraligand (3IL) excited state localized on one of the CC-pyrenyl units (Pomestchenko, I. E.; Luman, C. R.; Hissler, M.; Ziessel, R.; Castellano, F. N. Inorg. Chem. 2003, 42, 1394-96). trans-Pt(PBu3)2(C[triple bond]C-pyrene)2 serves as a model system that provides a good representation of the CC-pyrene-localized 3IL state in a Pt(II) complex lacking the MLCT excited state. Following 400 nm excitation, the formation of the 3MLCT excited state in Pt(dbbpy)(C[triple bond]C-Ph)2 is complete within 200 +/- 40 fs, and intersystem crossing to the 3IL excited state in trans-Pt(PBu3)2(C[triple bond]C-pyrene)2 occurs with a time constant of 5.4 +/- 0.2 ps. Selective excitation into the low-energy MLCT bands in Pt(dbbpy)(C[triple bond]C-pyrene)2 (lambda(ex) = 480 nm) leads to the formation of the 3IL excited state in 240 +/- 40 fs, suggesting ultrafast wire-like energy migration in this molecule. The kinetic data suggest that the presence of the MLCT states in Pt(dbbpy)(C[triple bond]C-pyrene)2 markedly accelerates the formation of the triplet state of the pendant pyrenylacetylide ligand. In essence, the triplet sensitization process is kinetically faster than pure intersystem crossing in trans-Pt(PBu3)2(CC-pyrene)2 as well as vibrational relaxation in the MLCT excited state of Pt(dbbpy)(C[triple bond]C-Ph)2. These results are potentially important for the design of chromophores intended to reach their lowest excited state on subpicosecond time scales and advocate the likelihood of wire-like behavior in triplet-triplet energy transfer.  相似文献   

15.
Many Ru and Os systems display photoactive (3)MLCT states. Systems activated by therapeutic window light in the absence of O(2) remain elusive. [(bpy)(2)Os(dpp)RhCl(2)(phen)](3+) photobinds and photocleaves DNA under red light in an oxygen independent manner, due to molecular design involving one Os chromophore coupled to a photoactive cis-Rh(III)Cl(2) moiety.  相似文献   

16.
Phosphorescence spectra of tris(2,2'-bipyridine) metal compounds, [M(bpy)3]n+, where M = Zn(II), Ru(II), Os(II), Rh(III), and Ir(III), were calculated using a harmonic oscillator approximation of adiabatic potential surfaces obtained by density functional theory (DFT). Using the Huang-Rhys (S) factors calculated by theoretical Franck-Condon analysis of T1 and S0 geometries, we successfully reproduced the emission spectra observed under various conditions by nonempirical calculations. The simulations of well-structured spectra of the Zn(II), Rh(III), and Ir(III) compounds confirmed that the emission originated from localized ligand-centered excited states with considerably distorted geometries of C2 symmetry. The spectrum simulation revealed that the phosphorescence state of [Ru(bpy)3]2+ was localized 3MLCT both in a solution and a glass matrix. Furthermore, a highly resolved phosphorescence spectrum observed for [Ru(bpy)3]2+ doped in a [Zn(bpy)3](ClO4)2 crystal was reproduced well using the geometry of the localized 3MLCT by assuming mode-specific broadening of low-frequency intramolecular vibrational modes. The deuterium effects of the electronic origins of the doped crystal observed by Riesen et al. were in excellent agreement with those predicted for the localized 3MLCT. However, the calculated satellite structures of the localized 3MLCT involving bpy-h8 in [Ru(bpy-h8)(3-x)(bpy-d8)x]2+ (x = 1,2) exhibited only the bpy-h8 vibrational modes, inconsistent with the simultaneous appearance of both bpy-h8 and bpy-h8 modes in the observed spectra. A simulation on the basis of the geometry of the delocalized 3MLCT was in reasonable agreement with an unresolved spectrum observed for a neat crystal of [Ru(bpy)3](PF6)2, which is inconsistent with the assignments of localized 3MLCT on the basis of the electronic origins. The inconsistency of the assignment on the basis of the adiabatic model is discussed in terms of vibronic coupling between the localized 3MLCT states. The 3MLCT state in [Os(bpy)3]2+ seems to vary with the environment: a fully localized 3MLCT in a solution, partially localized in a glass matrix, and delocalized in PF6 salts.  相似文献   

17.
A series of diimine-tetracyanoosmate anions [Os(diimine)(CN)4]2- [diimine=2,2'-bipyridine (bipy), 2,2'-bipyrimidine (bpym), 1,10-phenanthroline (phen), and 4,4'-tBu2-2,2'-bipyridine (tBu2bpy)] were prepared and isolated as their Na+ salts (water soluble) or PPN+ salts (soluble in organic solvents). Several examples were crystallographically characterized; the Na+ salts form a range of 1D, 2D, or 3D infinite coordination polymers via coordination of the cyanide groups to Na+ cations in either an end-on or a side-on manner. The [Os(diimine)(CN)4]2- anions are solvatochromic, showing three MLCT absorptions, which are considerably blue-shifted in water compared to organic solvents, in the same way as is well-known for the analogous [Ru(diimine)(CN)4]2- anions. Luminescence in the red region of the spectrum is very weak but (following the expected solvatochromic behavior) is higher energy and more intense in water. However, by exploiting the effect of metallochromism (ref 4), the emission from [Os(tBu2bpy)(CN)4]2- in MeCN can be very substantially boosted in energy, intensity, and lifetime in the presence of Lewis-acidic metal cations (Na+, Ba2+, Zn2+), which, in a relatively noncompetitive solvent, coordinate to the cyanide groups of [Os(tBu2bpy)(CN)4]2-. This has an effect similar in principle to hydrogen bonding of the cyanides to delta+ protons of water, but very much stronger, such that in the presence of Zn2+ ions in MeCN the 1MLCT and 3MLCT absorptions are blue-shifted by ca. 7000 cm(-1), and the luminescence moves from 970 nm (vanishingly weak) to 610 nm with a lifetime of 120 ns (dominant component). Thus, the binding of metal cations to the cyanides provides a mechanism to incorporate [Os(diimine)(CN)4]2- complexes into polynuclear assemblies and simultaneously increases their 3MLCT energy and lifetime to an extent that makes them comparable to much-stronger luminophores such as Ru(II)-polypyridines.  相似文献   

18.
Zigler DF  Wang J  Brewer KJ 《Inorganic chemistry》2008,47(23):11342-11350
Bimetallic complexes of the form [(bpy)(2)Ru(BL)RhCl(2)(phen)](PF(6))(3), where bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and BL = 2,3-bis(2-pyridyl)pyrazine (dpp) or 2,2'-bipyrimidine (bpm), were synthesized, characterized, and compared to the [{(bpy)(2)Ru(BL)}(2)RhCl(2)](PF(6))(5) trimetallic analogues. The new complexes were synthesized via the building block method, exploiting the known coordination chemistry of Rh(III) polyazine complexes. In contrast to [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) and [{(bpy)(2)Ru(bpm)}(2)RhCl(2)](PF(6))(5), [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) have a single visible light absorber subunit coupled to the cis-Rh(III)Cl(2) moiety, an unexplored molecular architecture. The electrochemistry of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) showed a reversible oxidation at 1.61 V (vs Ag/AgCl) (Ru(III/II)), quasi-reversible reductions at -0.39 V, -0.74, and -0.98 V. The first two reductive couples corresponded to two electrons, consistent with Rh reduction. The electrochemistry of [(bpy)(2)Ru(bpm)RhCl(2)(phen)](PF(6))(3) exhibited a reversible oxidation at 1.76 V (Ru(III/II)). A reversible reduction at -0.14 V (bpm(0/-)), and quasi-reversible reductions at -0.77 and -0.91 V each corresponded to a one electron process, bpm(0/-), Rh(III/II), and Rh(II/I). The dpp bridged bimetallic and trimetallic display Ru(dpi)-->dpp(pi*) metal-to-ligand charge transfer (MLCT) transitions at 509 nm (14,700 M(-1) cm(-1)) and 518 nm (26,100 M(-1) cm(-1)), respectively. The bpm bridged bimetallic and trimetallic display Ru(dpi)-->bpm(pi*) charge transfer (CT) transitions at 581 nm (4,000 M(-1) cm(-1)) and 594 nm (9,900 M(-1) cm(-1)), respectively. The heteronuclear complexes [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) and [{(bpy)(2)Ru(dpp)}(2)RhCl(2)](PF(6))(5) had (3)MLCT emissions that are Ru(dpi)-->dpp(pi*) CT in nature but were red-shifted and lower intensity than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4). The lifetimes of the (3)MLCT state of [(bpy)(2)Ru(dpp)RhCl(2)(phen)](PF(6))(3) at room temperature (30 ns) was shorter than [(bpy)(2)Ru(dpp)Ru(bpy)(2)](PF(6))(4), consistent with favorable electron transfer to Rh(III) to generate a metal-to-metal charge-transfer ((3)MMCT) state. The reported synthetic methods provide means to a new molecular architecture coupling a single Ru light absorber to the Rh(III) center while retaining the interesting cis-Rh(III)Cl(2) moiety.  相似文献   

19.
Two new bidentate ligands (1 and 2) with bicyclic guanidine moieties were synthesized and attached to a Ru(II)(bpy)(2) core (bpy = 2,2'-bipyridine) to afford complexes 3 and 4, which were characterized by spectroscopic and electrochemical methods. Complex 4 was further characterized by X-ray crystallography. In cyclic voltammetric studies, both complexes show a Ru(II/III) couple, which is 500 mV less positive than the Ru(II/III) couple of Ru(bpy)(3)(2+). The (1)MLCT and (3)MLCT states of 3 (560 nm/745 nm) and 4 (550 nm/740 nm) are significantly red-shifted with respect to Ru(bpy)(3)(2+) (440 nm/620 nm). Compounds 3 and 4 exhibit emission from a Ru(II)-to-bpy (3)MLCT state, which is rarely the emitting state at λ > 700 nm in [Ru(bpy)(2)(N-N)](2+) complexes.  相似文献   

20.
N,N'-Chelating ligands based on the 2-(2-pyridyl)benzimidazole (PB) core have been prepared with a range of substituents (phenyl, pentafluorophenyl, naphthyl, anthracenyl, pyrenyl) connected to the periphery via alkylation of the benzimidazolyl unit at one of the N atoms. These PB ligands have been used to prepare a series of complexes of the type [Re(PB)(CO)(3)Cl], [Pt(PB)(CCR)(2)](where -CCR is an acetylide ligand) and [Ru(bpy)(2)(PB)][PF(6)](2)(bpy = 2,2'-bipyridine). Six of the complexes have been structurally characterised. Electrochemical and luminescence studies show that all three series of complexes behave in a similar manner to the analogous complexes with 2,2'-bipyridine in place of PB. In particular, all three series of complexes show luminescence in the range 553-605 nm (Pt series), 620-640 nm (Re series) and 626-645 nm (Ru series) arising from the (3)MLCT state, with members of the Pt(II) series being the most strongly emissive with lifetimes of up to 500 ns and quantum yields of up to 6% in air-saturated CH(2)Cl(2) at room temperature. In the Re and Ru series there was clear evidence for inter-component energy-transfer processes in both directions between the (3)MLCT state of the metal centre and the singlet and triplet states of the pendant organic luminophores (naphthalene, pyrene, anthracene). For example the pyrene singlet is almost completely quenched by energy transfer to a Re-based MLCT excited state, which in turn is completely quenched by energy transfer to the lower-lying pyrene triplet state. For the analogous Ru(II) complexes the inter-component energy transfer is less effective, with (1)anthracene --> Ru((3)MLCT) energy transfer being absent, and Ru((3)MLCT)-->(3)anthracene energy transfer being incomplete. This is rationalised on the basis of a greater effective distance for energy transfer in the Ru(II) series, because the MLCT excited states are localised on the bpy ligands which are remote from the pendant aromatic group; in the Re series in contrast, the MLCT excited states involve the PB ligand to which the pendant aromatic group is directly attached, giving more efficient energy transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号