首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
《Electroanalysis》2017,29(12):2839-2846
In this paper, a glassy carbon electrode (GCE) was modified with polyzincon. The modified electrode was used as a simple, inexpensive and highly sensitive electrochemical sensor for the determination of organophosphorus pesticide fenitrothion. To fabricate the electrochemical sensor, GCE was immersed in 0.10 mmol L−1 zincon solutions at pH 7.0 and then successively scanned between −1.00 to 2.20 V (vs . Ag/AgCl) at a scan rate of 70 mV s−1 for six cycles. The morphology and structure of the polyzincon were studied with atomic force microscopy and scanning electron microscopy. A comparison of the electrochemical behavior of fenitrothion on the unmodified and polyzincon modified‐GCE showed that in the modified electrode not only the oxidation peak current increased, but also the overpotential shifted to lower one. The experimental conditions such as sample solution pH, accumulation potential, and time were optimized. The differential pulse voltammetric responses of fenitrothion at potential about −0.60 V was used for the determination of fenitrothion. The peak current increased with increasing the concentration of fenitrothion in the range of 5 to 8600 nmol L−1 with a detection limit of 1.5 nmol L−1. Finally, the electrochemical sensor was used for the analysis of fenitrothion in water and fruit samples.  相似文献   

2.
We report a method for the fabrication of glassy carbon electrode modified porous graphene-polypyrrole-polyphenol oxidase (GCE−PG−PPy−PPO) modified electrode for the determination dopamine. The optimization of pH, concentration and detection limit of dopamine was employed by amperomatric technique. The detection limit of dopamine was found to be in a linear range of 2×10−8 to 4.6×10−5 M and lower limit detection is 4×10−9 M. Michealis – Menten constant (Km) and the activation energy were calculated as 31.32 μM and 37.4−Kj mol−1, respectively. The developed biosensor was used to quantify the dopamine in human urine sample.  相似文献   

3.
《Electroanalysis》2017,29(8):1985-1993
Polytyramine (PT) has been electro‐deposited onto multi‐walled carbon nanotube (MWCNT) modified glassy carbon (GC) electrodes via oxidation of tyramine in 0.1 M H3PO4 by cycling the potential over the range of −400 mV to 1300 mV (versus Ag/AgCl). The reactivity of the resulting chemically‐modified electrodes was characterized using cyclic voltammetry in the presence and absence of reduced nicotinamide adenine dinucleotide (NADH). The modified electrodes displayed electrochemical activity due to the formation of quinone species and were catalytically active towards NADH oxidation by lowering the oxidation peak potential by 170 mV compared to the value of the MWCNT modified electrode with a peak potential of 180±10 mV (versus Ag/AgCl). The MWCNT/PT surface was further characterized using SEM and XPS methods, which indicated that a thin polymeric film had been formed on the electrode surface. The present work demonstrates the advantage of using PT as a platform that combines both the immobilization of alcohol dehydrogenase (ADH) and the mediation of NADH oxidation at a low overpotential essential to the design of high performance ethanol biosensors, all within an easily electropolymerizable film. The resulting biosensor displayed an ethanol sensitivity of 4.28±0.06 μA mM−1 cm−2, a linear range between 0.1 mM and 0.5 mM and a detection limit of 10 μM.  相似文献   

4.
《Electroanalysis》2017,29(2):635-642
An electrochemical sensor for paracetamol (PC) based on the hexacyanoferate(III) intercalated Ni−Al layered double hydroxide (Ni−Al−HCF) was presented. The as‐prepared LDH structurally and morphologically was characterized by scanning electron microscopy, X‐ray diffraction, and Fourier transform IR. Electrochemical studies revealed that Ni−Al−HCF film modified glassy carbon (GC) electrode exhibited remarkable electrocatalytic activity toward the oxidation of paracetamol. The electrochemical behavior of PC on the Ni−Al−HCF film was investigated in detail. Under optimum experimental conditions, the electrocatalytic response of the modified GC electrode was linear in the PC concentration range 3×10−6−–1.5×10−3 mol L−1, with a detection limit of 8×10−7 mol L−1 (S/N=3), using hydrodynamic amperometry. In addition, the modified electrode exhibited good reproducibility, long‐term stability and anti‐interference property. The fabricated sensor was successfully applied to determination of PC in various pharmaceutical preparations such as tablets, oral solution, and oral drops. Finally, the method was validated by the analysis of paracetamol spiked human serum samples, and good recoveries were obtained in the range of 99.2–103 %.  相似文献   

5.
《Electroanalysis》2017,29(5):1258-1266
The nanoporous graphene papers (NGPs) was prepared by the hard‐template method. The Pt−Pd modified NGPs hybrid was prepared by the self‐assembly method. Then a glassy carbon electrode (GCE) modified with Pt−Pd bimetallic nanoparticles‐functionalized nanoporous graphene composite has been prepared for the electrochemical determination of Xanthine (XA). The Pt−Pd/NGPs hybrid was characterized by transmission electron microscopy, scanning electron microscope and X‐ray diffraction. The electrochemical behavior of XA on Pt−Pd/NGPs/GCE was investigated by cyclic voltammetry and amperometric i‐t. The Pt−Pd/NGPs modified electrode exhibited remarkably electrocatalytic activity towards the oxidation reaction of XA in phosphate buffer solution (pH=5.5). Under the optimal conditions, the determination of XA was accomplished by using amperometric i‐t, the linear response range from 1.0×10−5∼1.2×10−4 M. The detection limit was 3.0×10−6 M (S/N=3). The proposed modified electrode showed good sensitivity, selectivity, and stability with applied to determine XA in human urine.  相似文献   

6.
Stable lipid film was made by casting dipalmitoylphosphatidylcholine (DPPC) and rutin onto the surface of a glassy carbon (GC) electrode. The electrochemical behavior of rutin in the DPPC film was studied. The modified electrode coated with rutin gave quasi-reversible reduction-oxidation peak on cyclic voltammogram in the phosphate buffer (pH 7.4). The peak current did not decrease apparently after stored at 4°C for 8 hours in refrigerator. This model of biological membrane was used to investigate the oxidation of dihydronicotinamide adenine dinucleotide (NADH) by rutin. Rutin in the film acts as a mediator. The modified electrode shows a great enhancement and the anodic peak potential was reduced by about 220 mV in the oxidation of 5×10−3 mol L−1 NADH compared with that obtained at a bare glassy carbon electrode.  相似文献   

7.
《Electroanalysis》2018,30(9):1946-1955
In this paper, a rapid and sensitive modified electrode for the simultaneous determination of hydroquinone (HQ) and bisphenol A (BPA) is proposed. The simultaneous determination of these two compounds is extremely important since they can coexist in the same sample and are very harmful to plants, animals and the environment in general. A carbon paste electrode (CPE) was modified with silver nanoparticles (nAg) and polyvinylpyrrolidone (PVP). The PVP was used as a reducing and stabilizing agent of nAg from silver nitrate in aqueous media. The nAg‐PVP composite obtained was characterized by transmission electron microscopy and UV‐vis spectroscopy. The electrochemical behavior of HQ and BPA at the nAg‐PVP/CPE was investigated in 0.1 mol L−1 B−R buffer (pH 6.0) using cyclic voltammetry (CV) and square wave voltammetry (SWV). The results indicate that the electrochemical responses are improved significantly with the use of the modified electrode. The calibration curves obtained by SWV, under the optimized conditions, showed linear ranges of 0.09–2.00 μmol L−1 for HQ (limit of detection 0.088 μmol L−1) and 0.04–1.00 μmol L−1 for BPA (limit of detection 0.025 μmol L−1). The modified electrode was successfully applied in the analysis of water samples and the results were comparable to those obtained using UV‐vis spectroscopy.  相似文献   

8.
A NAD+-analog was coimmobilized with lactate dehydrogenase (LDH) on reticulated vitreous carbon (RVC) to give an amperometric lactate biosensor. Both LDH and the NAD+ -analog were bound covalently with carbodiimide to the surface of the porous RVC-material. The electrode was operated in a FIA-arrangement in the presence or absence of a soluble mediator. Meldola Blue. The stability was poor when the electrode was operated at +400 mV (vs. Ag/AgCl) in the absence of mediator but improved most significantly in the presence of 5 μM mediator, so that 65% of the original activity remained after 16 days. The amperometric currents were smaller with regeneration by mediator at −100 mV than with direct electrochemical oxidation at +400 mV, indicating that the additional steps slow down the reaction rate. Linear calibration plots were obtained from the detection limit, 1 μM, to 500 μM lactate with 5 μM mediator, reoxidized at −100 mV. The sample throughput was about 60 h−1.  相似文献   

9.
A composite graphite (CG) electrode modified with poly(2,6‐diaminopyridine) (PDAP) was used as solid state‐ion selective electrode for determination of mercury. The electrooxidation of monomer 2, 6 diaminopyridine (DAP) onto CG was accomplished from the 30 mM DAP in 5% H2SO4 and 0.5 M ZnSO4. The electrode displayed Nernstian response with slope of 28.4±1 mV decade−1 in concentration range of 1×10−6 to 1×10−1 M and in solution of pH 3–5. The limit of detection for electrode was 3×10−8 M with response time of 25 s. The electrode was also suitable as an indicator electrode in the potentiometric titration of Hg2+ with iodide.  相似文献   

10.
The performance of carbon nanotubes paste electrodes (CNTPE) prepared by dispersion of multi-wall carbon nanotubes (MWNT) within mineral oil is described. The resulting electrode shows an excellent electrocatalytic activity toward ascorbic acid, uric acid, dopamine, 3,4-dihydroxyphenylacetic acid (dopac) and hydrogen peroxide. These properties permit an important decrease in the overvoltage for the oxidation of ascorbic acid (230 mV), uric acid (160 mV) and hydrogen peroxide (300 mV) as well as a dramatic improvement in the reversibility of the redox behavior of dopamine and dopac, in comparison with the classical carbon (graphite) paste electrodes (CPE). The substantial decrease in the overvoltage of the hydrogen peroxide reduction (400 mV) associated with a successful incorporation of glucose oxidase (GOx) into the composite material, allow the development of a highly selective and sensitive glucose biosensor without using any metal, redox mediator or anti-interference membrane. No interference was observed at −0.100 V even for large excess of ascorbic acid, uric acid and acetaminophen. A linear response up to 30 mM (5.40 g l−1) glucose with a detection limit of 0.6 mM (0.11 g l−1) were obtained with the CNTPE modified with 10% w/w GOx. Such an excellent performance of CNTPE toward hydrogen peroxide, represents a very good alternative for developing other enzymatic biosensors.  相似文献   

11.
In this work, a glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes functionalized with carboxylic groups (MWCNT−COOH) was used to determine the hormone estrone in seawater samples. Modification of the electrode was optimized using three successive 10-μL aliquots of the MWCNT−COOH dispersion in ethanol (1 : 5 mL). The cyclic voltammetry results showed an oxidation peak at 0.59 V with characteristics of an irreversible process, pH dependent and controlled by adsorption of species. The results of square-wave voltammetry showed that the intensities of peak currents for the MWCNT−COOH/GCE were about 2.5 times higher than for GCE. The calibration curve showed a linearity of 0.9981 and a sensitivity of 0.1521 μA/mol L−1. The limits of detection and quantification were 0.117 and 0.392 μmol L−1, respectively. The recovery obtained using seawater samples was 91%, indicating the applicability of the method in marine environments.  相似文献   

12.
3-dimensional (3D) Fe−Co−LDH/MXene composite was synthesized by in-situ synthesis and assembly of Fe−Co−LDH rod around MXene under hydrothermal condition. Due to the unique 3D configuration and good conductivity, the obtained Fe−Co−LDH/MXene modified glassy carbon electrode (Fe−Co−LDH/MXene/GCE) showed excellent electrochemical activity for As(III) detection. Via square-wave anodic stripping voltammetry, the response current on Fe−Co−LDH/MXene/GCE had good linear relationship with As(III) concentrations (1∼1000 ppt) with superior sensitivity (0.22 μA ppt−1 cm−2) and low detection limit (0.9 ppt). The mechanism of As(III) adsorption was demonstrated. The electrode showed excellent anti-interference ability. Real water sample analysis demonstrated the Fe−Co−LDH/MXene/GCE was deployable in aqua-system.  相似文献   

13.
Direct electrochemistry of hemoglobin (Hb) has been achieved by its direct immobilization on carbon ionic liquid electrode (CILE). CILE was immersed in a solution containing Hb and ionic liquid, octylpyridinium chloride ([OcPy][Cl]), to directly immobilize Hb on CILE. Cyclic voltammetry of modified electrode exhibited quasi-reversible peaks corresponding to Hb. The oxidation and reduction peak potentials of immobilized Hb in acetate buffer solution, pH 5.0 and at a scan rate of 0.1 V s−1 were obtained at about –150 mV and –290 mV, respectively. The average surface coverage of the electroactive Hb adsorbed on the electrode surface was calculated as 8.4 × 10−11 mol cm−2. Hb retained its bioactivity on modified electrode and showed excellent electrocatalytic activity towards oxygen, hydrogen peroxide and nitrite. Hydrogen peroxide can be determined in the range of 1.0 × 10−4–5.0 × 10−3 M.  相似文献   

14.
《Electroanalysis》2017,29(4):1103-1112
Three dimensional graphene‐multiwalled carbon nanotube nano composite (3DG/MWCNTs−Nc) was synthesized by simple hydrothermal method for the amperometric determination of caffeic acid (CA). The prepared nanocomposite was characterized by scanning electron microscopic technique (SEM), ultraviolet‐visible spectroscopy (UV), Raman spectroscopy and infrared spectroscopy (IR). Moreover, the interfacial electron transfer properties of the modified electrode were carried out by the electro chemical impedance spectroscopy (EIS). Besides, the electro chemical performance of the modified electrode was carried out by the cyclic voltammetry (CV) and amperometric (i‐t ) technique. The proposed electrode was exhibited an enhanced electrocatalytic activity towards the detection of CA. Under the optimal condition, the 3DG/MWCNTs−Nc modified electrode displayed a linear range from 0.2 to 174 μM, detection limit (LOD) 17.8 nM and sensitivity of 5.8308 μA μM−1 cm−2 and on applied potential + 0.2 V. These result showed, 3DG/MWCNTs−Nc modified electrodes showed good repeatability, reproducibility, and higher stability. In addition, the fabricated electrode was then successfully used to determine the CA in real samples with satisfactory recoveries. Which suggests that the 3DG/MWCNTs−Nc as a robust sensing materials for the electrochemical detection of CA.  相似文献   

15.
Single-atom catalysts (SACs) show great promise for electrochemical CO2 reduction reaction (CRR), but the low density of active sites and the poor electrical conduction and mass transport of the single-atom electrode greatly limit their performance. Herein, we prepared a nickel single-atom electrode consisting of isolated, high-density and low-valent nickel(I) sites anchored on a self-standing N-doped carbon nanotube array with nickel–copper alloy encapsulation on a carbon-fiber paper. The combination of single-atom nickel(I) sites and self-standing array structure gives rise to an excellent electrocatalytic CO2 reduction performance. The introduction of copper tunes the d-band electron configuration and enhances the adsorption of hydrogen, which impedes the hydrogen evolution reaction. The single-nickel-atom electrode exhibits a specific current density of −32.87 mA cm−2 and turnover frequency of 1962 h−1 at a mild overpotential of 620 mV for CO formation with 97 % Faradic efficiency.  相似文献   

16.
《Electroanalysis》2018,30(1):154-161
Trace amount of arsenate in the presence of arsenite was determined directly on pencil graphite electrode modified by graphene oxide and zirconium (Zr−G−PGE). The layer‐by‐layer modification of PGE was characterized by scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). Key point of the developed method was quick adsorption of arsenate than arsenite on the Zr−G−PGE. In optimal conditions, the Zr−G−PGE was applied for determination of arsenate using differential pulse voltammetry in a linear range 0.10–40.0 μg L−1 with a limit of determination of 0.12±0.01 μg L−1. The sensitivity of the electrode was 1.36±0.07 μA/μg L−1. The modified electrode was used to measure the concentration of arsenate in the river water. A recovery test was performed by introducing 10 μg L−1 arsenate into the rivers water in order and acceptable data of average recovery of 101.2 % was obtained. From the experimental results, the as‐prepared electrode can provide a satisfactory method for direct determination of arsenate in real samples.  相似文献   

17.
A novel and sensitive method for the determination of aflatoxin B1 (AFA−B1) in ground paprika using a methyltrioctylammonium chloride ionic liquid (IL), iron oxide nanorods (Fe3O4 nanorods) and reduced graphene oxide (RGO) fabricated glassy carbon electrode (GCE) was developed. The synthesized nanoparticles, nanocomposites and modified electrode surfaces were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), thermogravimetric analysis (TGA/DSC) and x-ray diffraction (XRD) analyses. Moreover, the electrochemical performance of the developed sensor was determined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The obtained results demonstrate that the sensitivity of AFA−B1 is significantly enhanced on RGO-Fe3O4 nanorods-IL-GCE in comparison with bare GCE, RGO-GCE and RGO-Fe3O4 nanorods-GCE. The redox peak currents of AFA−B1 exhibited good linear relationship with its concentration in the range from 0.02 to 0.33 ng mL−1 with detection limit of (LOD) 0.03 ng mL−1 and limit of quantification (LOQ) 0.36 ng mL−1 respectively (S/N=3). In addition, the fabricated electrode showed good stability and reproducibility. The proposed technique was effectively applied to identify the AFA−B1 in real ground paprika samples with acceptable results.  相似文献   

18.
Here we describe a strategy for achieving direct electron transfer to native glucose oxidase (GOx), an enzyme in which the redox active centre is buried deep within the glycoprotein. To achieve this a glassy carbon electrode is modified with a mixed monolayer of 4-carboxyphenyl and a 20 Å long oligo(phenylethynyl) molecular wire (MW), assembled from the respective aryl diazonium salts. Subsequently GOx is adsorbed to the interface, followed by covalent attachment. The redox chemistry of the active centre of glucose oxidase, flavin adenine dinucleotide, was observed at an E1/2 of –443 mV (vs. Ag|AgCl). The enzyme was shown to retain its activity. Most importantly, in the absence of oxygen the electrode was still able to biocatalytically turn over glucose at −400 mV, thereby demonstrating that the enzyme was being recycled back to its catalytically active oxidized form from its inactive reduced form. The rate of enzyme turnover was 1.1 s−1.  相似文献   

19.
A novel solid-state electrochemical sensor based on a newly synthesized cross-linked copper(II) doped-copolymer and carbon nanotube material was developed for the direct determination of monohydrogen phosphate ions (HPO42−). The synthesized copolymers were characterized by FTIR, XPS, TG/DTG-DTA and SEM techniques. The sensor had a Nernstian slope:-30.7±0.4 mV/decade, linear concentrations range: 1.0×10−6 - 1.0×10−1 M, detection limit: 6.5×10−7 M, response time: 4 s and life time: 17 weeks. The sensor displayed constant potentials in the pH range 7.0-9.5. The sensor was successfully used as an indicator electrode in potentiometric titration and the direct determination of HPO4 2− in water samples.  相似文献   

20.
《Electroanalysis》2017,29(7):1762-1771
In this work we present the development of a simple handmade approach for the easy fabrication of three‐electrode electrochemical devices based on newly in‐house developed carbon ink composed of graphite powder and polystyrene. Different proportions of graphite/polystyrene were investigated for the optimization of the ink. The counter and reference electrodes were produced using commercial carbon ink and silver glue. Scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry were used to investigate the morphology and the electrochemical properties of the sensor. The results showed that the electroactive area of the optimized working electrode was ca . 2.35 times larger than its geometric area. The RSD values obtained for repeatability and reproducibility were 0.20% and 2.78%, respectively, which suggest no significant variation on the electrodes fabricated. The analytical feasibility of the electrode was tested through its application for the determination of nitrite in drinking water. The quantifications were successfully performed at levels below the maximum contaminant level established for nitrite. A limit of detection of 1.42 × 10−6 mol L−1 and recoveries of ca . 103 % were achieved. The results were validated using ion‐chromatography technique with good agreement. The performance of the unmodified sensor proposed here on nitrite determination was better than some recently reported modified electrodes obtained through complex procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号